New Physics Searches at ATLAS Highlights - ZPW 2017

Marumi Kado LAL, Orsay *Highest mass central dijet event 6.4 TeV*

ETH Zürich January 9, 2017

Preamble and disclaimers

- ATLAS has produced more than 50 recent notes each including in many cases several search results, this will not be an exhaustive review.
- This talk will try to emphasize when relevant the agreement between the data and the SM prediction, and point out where relevant if there are any deviations and try to emphasize the importance of the SM processes modeling in many of the searches.
- It will also try to illustrate how the large diversity of possible new physics scenarios covered by ATLAS and how it is an essential component to ensure that no stone is left uncovered.
- Higgs search results from ATLAS will be covered by Florencia

The Run 2 Dataset

160

120

100

80

60

40

20

10 15 20 25 30 35 40

osity [pb 140

Outstanding year for the LHC:

- Peak luminosity from 1.5 10³⁴ cm⁻²s⁻¹
- Integrated delivered luminosity of 40 fb⁻¹

Excellent performance of ATLAS:

- In 2016 25 ns inter bunch spacing impact on Pile-up conditions
- ATLAS has recorded 36.0 fb⁻¹
- (with DT efficiency of ~94% and a DQ eff. of 93-95%).

For the physics:

ICHEP dataset 10 - 12 fb⁻¹ : Important threshold in luminosity where most searches reach well beyond Run 1 sensitivity (Higgs measurements as well).

Possible goals for next year

Mean Number of Interactions per Crossing

Peak luminosity 1.4 - 2 10³⁴ cm⁻²s⁻¹ and Peak PU - 37 to 56

ATLAS Online, Vs=13 TeV

10 15 20 25 30 35 40 45

5

2015: <**

Mean Number of Interactions per Crossing

2016: <u> = 24.2

Total: <u> = 22.

180

160 osity |

140È

120

100È

80^E

60E

40

Integrated luminosity between 45 and 60 fb⁻¹

Reappraised goal for Run 2 150 fb⁻¹

 $\sqrt{s} = 8 \text{ TeV}, \left[\text{Ldt} = 20.8 \text{ fb}^{-1}, < \mu > = 20.7 \right]$

 $\sqrt{s} = 7 \text{ TeV}, \left[\text{Ldt} = 5.2 \text{ fb}^{-1}, <\mu > = 10^{-1} \text{ J} \right]$

Doubling time of luminosity is now O(1 year)

Detector Status

ATLAS – (First out of 3 upgrade phases)

- 4th innermost layer of pixels (3.3 cm, 2nd layer at 5.05 cm)
- Consolidation: Complete muon coverage, Luminosity detectors, Repairs (LAr and Tile), Beam Condition. Monitors
- Infrastructure: New Beam Pipe, Magnets and Cryogenic system, Muon Chamber shielding, New pixel services
- Trigger/DAQ: Increase max L1 rate from 75kHz to 100kHz, new Central Trigger Processor, Merge L2 and HLT farms, Additional SFOs for higher output rate, topological triggers, FTK

Reconstruction Performance

Electrons and photons

- Single electron (γ) threshold 25 (140) GeV
- Likelihood (cut) based ID for electrons (y) and MVA-based calibration
- In-situ calibration using Z, W and J/Psi

Muons

- Single muon trigger threshold 24-25 GeV (2 muons 6-6 GeV)
- Excellent performance (with few sporadic muon chamber failures)
- In-situ calibration of energy and ID efficiency with Z (and J/Psi)

Jets

- Single jet trigger threshold 380 GeV
- Anti-kT 0.4 algorithm used with detector noise cleaning cuts and track based variable to mitigate PU effect.
- JES in situ uncertainty reach ~1% level already (central and intermediate pT range) – using Z, γ and multi-jets.

MET

- MET trigger threshold 90-110 GeV
- Reconstruction use all calibrated objects and a track-based soft term

Taus

- BDT based identification (70% eff. and ~50 rej.)
- In-situ calibration based on Z events

B-jets

- MVA based algorithm (77% eff., ~250 l-rej. and ~8 c-rej.)
- Improvement w.r.t Run 1 pT dependent but typically ~4 in rej.
- In-situ calibration of b-tag efficiency (using top events)

Reconstruction performance so far robust to PU

MV2c10, ∈ =77%

200

150

250

300

Jet p₋ [GeV]

0.7

Physics Modelling

A14 Minbias tune (for PU) Pythia 6 and 8 (using 7 TeV ATLAS data only)

V+Jets , Dibosons, Tribosons

Sherpa NLO (2partons) and LO (up to 4 partons) 2.1.1

Top pair production

Powheg-Box v2 (hdamp $=m_t$) – Pythia 6.428 – EvtGen (HF decays) - CT10 PDFs – Perugia 2012 tune

Additional samples (main backgrounds and signals) e.g. Pythia 8, Sherpa LO, MG5_aMC@NLO PDFs: CT10, CTEQ6L1, NNPDF3.0

Higher order cross sections used where calculations available

Thanks to the fruitful and very efficient interactions with theory Community

Di-Electron Event

Close to Highest Mass Dielectron $ET_1 = 370 \text{ GeV } ET_2 = 246 \text{ GeV}$ $m_{ee} = 1.8 \text{ TeV}$

Run: 280319 Event: 472098394 2015-09-25 16:25:21 CEST Z' to 2e candidate Event

Search for High Mass Z'

ATLAS-CONF-2016-045

- Modeling of the DY (PowhegBox v2 Pythia 8.186 and CT10)
- Understanding extrapolation of the calibration and the reconstruction efficiency at very high transverse momentum is critical.
- Limits at 4 TeV (compared to Run 1 limits of 2.9 TeV).

Search for High Mass W'

- Importance of systematic uncertainty related to MET in the low mass.
- Similarly the extrapolation of the efficiencies and the calibration at very high pT (up to a TeV) is very important: not a low hanging fruit!
- Limits at 4.74 TeV (compared to Run 1 limits of 3.2 TeV).

Diphoton Search

ATLAS-CONF-2016-059

The 750 GeV Excess

- Background estimate from fit of analytical shape.
- No excess observed in the 2016 data.
- No (global) significant excess in the combination of 2015 and 2016 data.

Nima Arkani Hamed (Aspen 2016)

Di-jet Searches

Resonant and non resonant search

ATLAS-CONF-2016-069

Resonnant search

Hunt for a bump, if none interpret in terms of limits using specific signal models.

Non-resonnant search

Search for distortions of the fijet angular distributions in bins of di-jet mass.

Interpret in terms of limits on Contact interaction.

Limits on CI mass scale of up to 20 TeV

Di-jet Searches

Investigating the intermediate mass range

. Expected limit

2000

1000

Observed limit

3000

m_z, [GeV]

0.05

300

400

Use higher jet activity to reach lower masses using an ISR jet

(C) ISR with jet ATLAS-CONF-2016-070

High Mass Di-Fatjet $ET_1 = 370 \text{ GeV } ET_2 = 246 \text{ GeV}$ $m_1 = 1.8 \text{ TeV}$

Di-boson full hadronic event

Run: 299584 Event: 563621388 2016-05-20 08:26:49 CEST M(JJ)=2.40 TeV

Jet Substructure

Simple selection of inclusive jet!

Nominal boson tagging algorithm

- Large R-jet algorithms used to tag hadronic decays of particles such as W, Z, Higgs and the to
- Algorithms use substructure of jets.
- Pileup subtraction is very important, and a large number algorithms have been developed.
- Excellent overall performance
 - Anti-kT R=1.0
 - Trimming: fcut = 5% and Rsub = 0.2
 - pT dependent (energy correlation ratio) D2 selections for W and Z separately (Multijet

reduction by 40 – 70)

Searches for a Resonance in Diboson VV Final States

ZV (with Z to **dilepton**)

Backgrounds

Z-jets is the main background, estimated using MC and normalised to mJ sidebands Diboson and top from MC

ZV (with Z to **vv**)

Backgrounds

Z-jets main background, W-jets and top are not negligible, these are estimated using CRs with 1 or 2 muons and one b-tag for the Top CR.

WV (with W to Iv)

Backgrounds

Z, W and top shapes from MC Diboson fully from MC Multijet shape from loose lepton ID

Searches for a Resonance in Diboson VV Final States

WV (with W to Iv)

Results

Analyses have similar sensitivities ranging between **2.2 TeV** and **2.5 TeV** for HVT additional vector bosons

- No significant excess observed, limits are set in these scenarios
- Interpretations also in Higgs and Graviton hypotheses

Searches in Diboson VH Final States

Leptonic channels: 6 regions OL, 1L-MET and 2L-MET with at least two jets and 1 or 2 b-tags (2 b-tags harder to distinguish at high pT) – done with 2015 data.

Fully hadronic channel:

ATLAS-CONF-2016-020

In boosted regime: W/Z tagging on one side and Higgs tagging on the other Slight excess observed in WH selection 3.5σ local and 2.5σ global at a mass near 3 TeV (for the time being it is the gathering of a few events near the tails of the distribution)

Searches for Vector Like Quarks

Nano overview of motivation

- Motivated as required in models where the Higgs is a pseudo Goldstone boson (e.g. in Composite Higgs and little Higgs models).
- Additional (sequential) 4th generation is ruled out by the Higgs couplings.
- Mass terms for fermions strongly interacting, i.e. Quarks which transform as SU(2)_L are gauge invariant and therefore do not need to couple to the Higgs.

Large variety of complex channels

 Complex channels looking for T(2/3), B(1/3): Ht+X, Wt+X, Wb+X, Zb+X, Zt+X (Performed at Run 2) so far and T(5/3) 4tops final state.

Complex search performed with 2015 data

Illustration of the reach in complexity of signature with up to 10 jets with 4 b-tags.

ATLAS-CONF-2016-020

VLQ Searches with the 2016 dataset

Q (Wb) Channel ATLAS-CONF-2016-072

Selection of one lepton and at least one very high ET jet (in excess of 350 GeV).

Background dominated by top (and Wjets), estimated from control regions.

Background

Dominated by

Complex final state

- One lepton
- MET > 60 GeV
- Boosted: 1-Large R jet and 3 Small-R jets
- **Resolved: Four Small-R** iets

Q pair (t,b - Z,H,W)

Channel

ATLAS-CONF-2016-101

Very complex final state

- One lepton
- MET > 350 GeV
- Four jets small-R jets
- (one b-tagged)
- Two large-R jets

Background dominated by top and singletop (and Wjets). W and tt from CRs, ST from MC.

Searches for SUSY

RPC and "Natural" SUSY

Searches

- 3d generation searches for stop and sbottom
- Gluino and squarks searches
- Searches for charginos and neutralinos "EW SUSY searches"
- Compressed scenarios: search for low pT stuff (soft leptons trigger strategy is important, low pT b's, etc...)

General Strategy

Use simplified models to cover the widest possible variety of topologies. (Then more rigorously investigate the MSSM parameter space in the pMSSM, using the available searches.

pMSSM Survey (Run 1 results)

Survey of the 19 MSSM parameters using existing constraints

- 300 k models investigated
- 30 G evts generated
- Signal contamination in background normalization taken into account

SUSY Searches

Illustration SUSY Search Strategy

ATLAS SUSY searches

Inspired by simplified models, topology oriented searches with several specific signal regions per channel (then typically event counting analyses).

Example of versatile search for SS dilepton, 3 leptons ATLAS-CONF-2016-037

Design analysis with SS 2-leptons (7 signal regions) or 3L (2 signal regions) with varying number of jets and b-jets, and MET cuts

m_x, [GeV]

500

400

300

200

100

400

Define specific event counting signal regions e.g.:

	SR1b
Observed	12
Total SM background	11.4 ± 2.8
$\overline{t\bar{t}Z}$	1.6 ± 0.6
$t\overline{t}W$	2.0 ± 0.7
Diboson	0.5 ± 0.4
Rare	2.7 ± 0.9
Fake/non-prompt leptons	3.3 ± 2.1
Charge-flip	1.43 ± 0.19

l observed limit 2015

800 85 m₆ [GeV]

[arXiv:1602.09058] All limits at 95% CI

450 500 550 600 650 700 750

- Give the results in terms of simplified model parameters.
- Also give limits in terms of number of events excluded (or total cross section) for each signal region (requires acceptances and efficiencies to apply to other models)

Main Stop Searches

factor 20, but these exclusions are under specific conditions, and there are unexcluded corridors.

Main Stop Searches

More detailed studies of the cases where the chargino is in the decay chain (including scenarios of W and chargino close to neutralino).

200

300

400

600

 $m_{\tilde{t}}$ [GeV]

500

200

400

600

800

m_{t̃} [GeV]

based on the difference in terms of number of jets and event kinematics to best cover these scenarii.

Stop compressed scenarios

Example SUSY 1L Stop Searches

Analysis strategy: Search done in many categories with different kinematic requirements:

- 1 electron or muon
- 4 jets or more and 1 or 2 b-tags
- Intermediate to large MET and transverse mass
- Several additional kinematic criteria

In ATLAS an excess is seen in two regions with four jets (1b) and intermediate/high MET 260-300 GeV with a p-value of 3.3σ

More Specific Stop Searches

Search for the stop in GMSB (gravitino LSP) models with stau NLSP

- Require one hadronically decaying tau, one lepton, one b-jet.
- The main background is from semi-leptonic top pair production with one fake tau (estimated from two CRs for both real and fake taus based on event kinematices).

Search for the stop2 in topologies with a Z boson

- Require at least 3 leptons with a pair OS-SF compatible with a Z, at least 5 jets, one b-jet and MET>100 GeV.
- Largest background ttZ production (from CR – Iwer MET)

ATLAS-CONF-2016-038

Strong SUSY Searches (Squarks and gluinos)

The 2L (OS-SF) strong production saga

Run 1

Selection cuts

- Two SS and SF leptons (compatible or not in mass with the Z depending on whether On-Z or edge analysis).
- Two or more jets.
- Large MET >200 GeV (> 225 GeV for On-Z).
- 1 SR for On-Z and 3 SR for Edge.

Main backgrounds: (flavor symmetric from DF CR) mostly tt (80%) but also (Wt, WW and Z $\tau\tau$) and WZ and ZZ backgrounds.

Run 2

ATLAS-CONF-2016-098

Electroweak Production

Search for Neutralinos, Charginos and sleptons:

- Production with EW rates.
- In natural scenarios when Higgsinos are decoupled mass differences between χ^2 , χ^{\pm} and χ^0 can be small, typically O(GeV).
- Simplified models consider typically decays of χ^2 and χ^{\pm} either through slepton or directly to electroweak bosons.

Topologies with 1 or 4 leptons (including taus) in the final state.

Somewhat more accessible through sleptons as 100% branching assumed.

Run 1 searches

Include decays to electroweak bosons (more difficult due to additional leptonic branching)

SUSY RPV

Specific searches in RPV signatures with less (to no significant MET) done

 $\frac{1}{2}\lambda_{ijk}L_iL_j\bar{E}_k + \lambda'_{ijk}L_iQ_j\bar{D}_k + \frac{1}{2}\lambda''_{ijk}\bar{U}_i\bar{D}_j\bar{D}_k + \kappa_iL_iH_2$ RPV components of superpotential

Search for RPV Charginos in Leptonic sector

4 leptons channel Selecton on effective mass including leptons jets and MET

ATLAS-CONF-2016-075

Search for RPV gluinos in lepton-jet in Baryonic RPV

One isolated lepton, high jet mult. and b-jets. ATLAS-CONF-2016-094

Search for RPV gluinos in multi-jet in Baryonic RPV Search 4 and 5 jets or more considered.

ATLAS-CONF-2016-075

Search for RPV stops high mass dijet pairs in Baryonic RPV

Search for pairs of dijets ATLAS-CONF-2016-084

Unconventional Signatures

Typical scenarios

- Split SUSY models
- Hidden valley models

Stopped Gluino Search

Topologies

- Highly ionizing particles (using dE/dx)
- Out-of-time jets (R-hadrons)
- Highly displaced vertices
- Kinks in tracks
- Disappearing tracks
- High lepton multiplicities

These are very difficult analyses requiring specific non standard reconstruction algorithms.

Pixel dE/dx search

Unconventional Signatures

Overview of searches Run 2 in perspective: starting to cover ground for searches for LLP

Unconventional Signature Displaced Lepton Jets

Non-prompt and collimated lepton jets from hidden sector ATLAS-CONF-2016-042

- Weak coupling to SM particles imply long lifetime
- Search for pair of lepton-jets
- Either displaced muons
- Or imbalanced jets (high Had/EM ratio)
- Require specific reconstruction and trigger (collimated muons trigger as single and require additional HLT selection)
- Signal selected as back-to-back track isolated pairs of lepton jets.

Dark Matter Searches

Complementarity

Of course ourstanding if seen in a lab!

LHC more typical scenarios

At Run 1 extensive use of EFT approach allowing to compare LHC results with direct detection

EFT approach is limited to very heavy mediator masses, above O(fewTeV)

Large effort to extend framework to include accessible mediator, important for optimized/ more specific DM searches.

A successful effort to produce a prioritized and compact set of simplified models:

DM Forum benchmarks (LHC Exp. and Theory): http://arxiv.org/pdf/1507.00966.pdf

Large set of searches at LHC

A wealth searches for DM at the LHC:

- Mono-jet, mono-V (leptonic and hadronic),
 Mono-Higgs (various modes), Mono photon, Mono-top
- VBF-like signatures
- Associated production-like signatures
- Invisible Higgs searches

With first Run 2 (2015) Data, mono-

- Photon JHEP
- Z (II) ATLAS-CONF-2016-056
- V (qq) Phys. Lett. B
- H (bb) ATLAS-CONF-2016-019

Searches with 2016 data

 $\bar{\chi}$

Diphoton channel: ATLAS-CONF-2016-087

Higgs diphoton-tpe analysis with analytical bkg estimate see Florencia's talk

Monojet event

ET _{jet} = 973 GeV MET = 954 GeV

Run Number: 279284, Event Number: 606734214

Date: 2015-09-14 12:05:34 CEST

The Mono-Jet Search

Selection requirements

- Trigger in this analysis MET>70 GeV (unprescaled)
- Reconstruction level MET above 250 GeV
- At least one jet of 250 GeV (up to four jets)
- MET should be isolated from the jets

Backgrounds

One of the main difficulties is the control of the Z(vv) and W(lv – where the leptons is outside the acceptance)

Signal region

Excellent dataprediction agreement Main background Z(vv)+jets and W(lv) +jets

Control region

W+jets control region complements a lower statistics Z(II) control region

Analysis will rely on the W/Z ratio at high jet mometum

Interplay DM and Mediator Searches In simplified model and Using the di-jet search down to the low mass range

Mini Searches Summary

No significant excess has been observed so far

Non significant excesses to keep an eye on:

- ATLAS-CONF-2016-050 Stops 1L: In (4J, 1b, high MET) 3.3σ (No excess in CMS so far)
- ATLAS-CONF-2016-083: V(W)H (Full hadronic boosted): 3.5 σ (2.5 σ global) at 3 TeV
- ATLAS-CONF-2016-084: Paired dijet local 2.6 σ (2.1 σ global) at 870 GeV
- ATLAS-CONF-2016-079: Four leptons high mass 2.9 σ (1.9 σ global) at 705 GeV
- ATLAS-CONF-2016-058: ttH ML in SS-0 τ and SS-1 τ not significant but excesses at Run-1 in ATLAS and CMS
- LFV Higgs decays to τv (discussed in Florencia's talk)

Exotics Overview

ATLAS Preliminary

Summary of searches Run 2 in perspective: very large ground covered still more to come!

ATLAS Exotics Searches* - 95% CL Exclusion

Status: August 2016

Sta	atus: August 2016					∫£ d	$t = (3.2 - 20.3) \text{ fb}^{-1}$	\sqrt{s} = 8, 13 TeV
	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£ dt[fb	¹] Limit		Reference
	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell\nu$ Bulk RS $G_{KK} \rightarrow HH \rightarrow bbbb$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$ \begin{array}{c} - & 2 e, \mu \\ 1 e, \mu \\ - & 2 1 e, \mu \\ - & 2 e, \mu \\ 2 \gamma \\ 1 e, \mu \\ - & 1 e, \mu \\ - & 1 e, \mu \\ \end{array} $	$ \geq 1 j - 1 j 2 j \geq 2 j \geq 3 j - 1 J 4 b \geq 1 b, \geq 1 J/2 \geq 2 b, \geq 4 j $	Yes Yes j Yes Yes	3.2 20.3 20.3 15.7 3.2 3.6 20.3 3.2 13.2 13.3 20.3 3.2	Mp 6.58 TeV Ms 4.7 TeV Mth 5.2 TeV Mth 5.2 TeV Mth 8.7 Mth 8.2 T Mth 9.5 GKK mass 2.68 TeV GKK mass 3.2 TeV GKK mass 1.24 TeV GKK mass 360-860 GeV BKK mass 1.46 TeV	$ \begin{array}{l} n=2 \\ n=3 \ \text{HLZ} \\ n=6 \\ \hline \text{TeV} \\ n=6, \\ M_D=3 \ \text{TeV}, \ \text{rot BH} \\ n=6, \\ M_D=3 \ \text{TeV}, \ \text{rot BH} \\ k/\overline{M}_{PI}=0.1 \\ k/\overline{M}_{PI}=0.1 \\ k/\overline{M}_{PI}=1.0 \\ BR=0.925 \\ \hline \text{Tier}(1,1), \\ BR(A^{(1,1)} \to tt)=1 \end{array} $	1604.07773 1407.2410 1311.2006 ATLAS-CONF-2016-069 1606.02265 1512.02586 1405.4123 1606.03833 ATLAS-CONF-2016-062 ATLAS-CONF-2016-049 1505.07018 ATLAS-CONF-2016-013
	$\begin{array}{l} \mathrm{SSM}\ Z' \to \ell\ell\\ \mathrm{SSM}\ Z' \to \ell\tau\\ \mathrm{Leptophobic}\ Z' \to bb\\ \mathrm{SSM}\ W' \to \ell\gamma\\ \mathrm{HVT}\ W' \to WZ \to qqvr\ \mathrm{model}\ \ell\\ \mathrm{HVT}\ W' \to WZ \to qqqq\ \mathrm{model}\ l\\ \mathrm{HVT}\ V' \to WH/ZH\ \mathrm{model}\ B\\ \mathrm{LRSM}\ W'_R \to tb\\ \mathrm{LRSM}\ W'_R \to tb \end{array}$	$2 e, \mu$ 2τ $-$ $1 e, \mu$ $B -$ multi-chann $1 e, \mu$ $0 e, \mu$	_ 2 b _ 1 J 2 J el 2 b, 0-1 j ≥ 1 b, 1 J	- Yes Yes - Yes -	13.3 19.5 3.2 13.3 13.2 15.5 3.2 20.3 20.3	2' mass 4.05 TeV 2' mass 2.02 TeV 2' mass 1.5 TeV W' mass 4.74 TeV W' mass 2.4 TeV W' mass 2.4 TeV V' mass 2.3 TeV W' mass 1.92 TeV W' mass 1.76 TeV	$g_V = 1$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2016-045 1502.07177 1603.08791 ATLAS-CONF-2016-082 ATLAS-CONF-2016-082 ATLAS-CONF-2016-055 1607.05621 1410.4103 1408.0886
5	Cl qqqq Cl ℓℓqq Cl uutt	_ 2 e,μ 2(SS)/≥3 e,	2 j ,µ ≥1 b, ≥1 j	– – Yes	15.7 3.2 20.3	Λ Λ Λ4.9 TeV	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2016-069 1607.03669 1504.04605
	Axial-vector mediator (Dirac DM) Axial-vector mediator (Dirac DM) $ZZ_{\chi\chi}$ EFT (Dirac DM)	0 e, μ 0 e, μ, 1 γ 0 e, μ	$ \begin{array}{c} \geq 1 \ j \\ 1 \ j \\ 1 \ J, \leq 1 \ j \end{array} $	Yes Yes Yes	3.2 3.2 3.2	m _A 1.0 TeV m _A 710 GeV M, 550 GeV	$\begin{array}{l} g_q{=}0.25, g_\chi{=}{1.0}, m(\chi) < 250 \; {\rm GeV} \\ g_q{=}0.25, g_\chi{=}{1.0}, m(\chi) < 150 \; {\rm GeV} \\ m(\chi) < 150 \; {\rm GeV} \end{array}$	1604.07773 1604.01306 ATLAS-CONF-2015-080
, X	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	_ _ Yes	3.2 3.2 20.3	LQ mass 1.1 TeV LQ mass 1.05 TeV LQ mass 640 GeV	$egin{array}{lll} eta = 1 \ eta = 1 \ eta = 1 \ eta = 0 \end{array}$	1605.06035 1605.06035 1508.04735
quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ QQ \rightarrow WqWq \\ VLQ \ T_{5/3} \ T_{5/3} \rightarrow WtWt \end{array} $	$\begin{array}{c} 1 \ e, \mu \\ 1 \ e, \mu \\ 2 / \geq 3 \ e, \mu \\ 1 \ e, \mu \\ 2 (\text{SS}) / \geq 3 \ e, \end{array}$	$ \begin{array}{l} \geq 2 \text{ b}, \geq 3 \text{ j} \\ \geq 1 \text{ b}, \geq 3 \text{ j} \\ \geq 2 \text{ b}, \geq 3 \text{ j} \\ \geq 2/\geq 1 \text{ b} \\ \geq 4 \text{ j} \\ \mu \geq 1 \text{ b}, \geq 1 \text{ j} \end{array} $	Yes Yes Yes - Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 3.2	T mass 855 GeV Y mass 770 GeV B mass 735 GeV B mass 755 GeV Q mass 690 GeV T _{5/3} mass 990 GeV	T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 ATLAS-CONF-2016-032
fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton ν^*	1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1 j 2 j 1 b, 1 j 1 b, 2-0 j –	- - Yes -	3.2 15.7 8.8 20.3 20.3 20.3	q* mass 4.4 TeV q* mass 5.6 TeV b* mass 2.3 TeV b* mass 1.5 TeV */ mass 3.0 TeV v* mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_{g} = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1512.05910 ATLAS-CONF-2016-069 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow ee$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$1 e, \mu, 1 \gamma 2 e, \mu 2 e (SS) 3 e, \mu, \tau 1 e, \mu - - - - - - - - - -$	_ 2 j _ 1 b _ _ _ √s = 13	Yes – – Yes – – TeV	20.3 20.3 13.9 20.3 20.3 20.3 7.0	a⊤ mass 960 GeV N ⁰ mass 2.0 TeV H ^{±±} mass 570 GeV spin-1 invisible particle mass 657 GeV monopole mass 1.34 TeV 10 ⁻¹ 1	$m(W_R) = 2.4 \text{ TeV, no mixing}$ DY production, BR($H_L^{\pm\pm} \rightarrow ee$)=1 DY production, BR($H_L^{\pm\pm} \rightarrow e\tau$)=1 $a_{non-res} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2 10 Mass scale ITeVI	1407.8150 1506.06020 ATLAS-CONF-2016-051 1411.2921 1410.5404 1504.04188 1509.08059

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. †Small-radius (large-radius) jets are denoted by the letter j (J).

Heavy

Excited

SUSY Overview

ATLAS Preliminary

 $\sqrt{s} = 7, 8, 13 \text{ TeV}$

Summary of SUSY Run 2 in perspective: very large ground covered still more to come! Main analyses and in compressed scenarios.

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: August 2016

	Model	e, μ, τ, γ	Jets	Enno	JL d1[fb	-') Mass limit	$\sqrt{s} = 7, 8$	3 TeV $\sqrt{s} = 13$ TeV	Reference
Indusive Searches	$ \begin{array}{l} MSUGRACMSSM \\ \bar{q}; \bar{q} \rightarrow q \bar{\xi}_1^D \\ \bar{q}; \bar{q} \rightarrow q \bar{\xi}_1^D (\text{compressed}) \\ \bar{z}; \bar{z} \rightarrow q \bar{\chi}_1^D \\ \bar{z}; \bar{z} \rightarrow q \bar{z}; \bar{z} \rightarrow q \bar{\chi}_1^D \\ \bar{z}; \bar{z} \rightarrow q \bar{z}; \bar{z} \rightarrow q \bar{\chi}_1^D \\ \bar{z}; \bar{z}; \bar{z} \rightarrow q \bar{z}; \bar{z} \rightarrow q \bar{z}; \bar{z}; \bar{z} \rightarrow \bar{z}; \bar{z}; \bar{z}; \bar{z} \rightarrow \bar{z}; \bar{z}; \bar{z}; \bar{z} \rightarrow \bar{z}; \bar{z}; \bar{z}; \bar{z}$	$\begin{array}{c} 0.3 \ e, \mu/1.2 \tau \\ 0 \\ monojet \\ 0 \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (SS) \\ 1.2 \ \tau + 0.1 \ i \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 0-3 jets 0-2 jets - 1 b 2 jets 2 jets 2 jets mono-jet	^b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 13.3 13.3 13.2 13.2 3.2 20.3 13.3 20.3 20.3	šīš 608 GeV šīš 608 GeV šīš 808 GeV šīš 8 šīš 8 šīš 8 šīš 8 šīš 8 šīš 8 šīš 900 GeV Jīš 805 GeV	1.85 TeV .35 TeV 1.80 TeV 1.83 TeV 1.7 TeV 1.7 TeV 2.0 TeV 1.05 TeV 1.37 TeV 1.8 TeV	$\begin{split} & m[i](\mathrm{sm}[g) \\ & m[\xi]) + cp[\xi]) + cp[\mathcal{L}^{d_1}] + cp[\mathcal{L}^{d_2}] + cp[\mathcal{L}^{d_1}] + cp[\mathcal{L}^{d_1}$	1507.05525 ATLAS-CONF-2016-078 1604.07773 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05679 1606.00150 1507.05499 ATLAS-CONF-2016-066 1503.03290 1503.03290
3 rd gen <u>ğ</u> med.	$\underline{\mathcal{Z}}_{2}^{2}, \underline{\mathcal{Z}} \rightarrow b \overline{b} \overline{k}_{1}^{D}$ $\underline{\mathcal{Z}}_{2}^{2}, \underline{\mathcal{Z}} \rightarrow t \overline{k}_{1}^{D}$ $\underline{\mathcal{Z}}_{2}^{2}, \underline{\mathcal{Z}} \rightarrow b \overline{s} \overline{k}_{1}^{T}$	0 0-1 «.μ 0-1 «.μ	3 b 3 b 3 b	Yes Yes Yes	14.8 14.8 20.1	Ř Ř Ř	1.89 TeV 1.89 TeV 1.37 TeV	$m \tilde{k}_{1}^{0}\rangle=0$ GeV $m \tilde{k}_{1}^{0}\rangle=0$ GeV $m \tilde{k}_{1}^{0} <300$ GeV	ATLAS-CONF-2018-052 ATLAS-CONF-2018-052 1407.0600
3 rd gen, squarks direct production	$\begin{array}{l} b_1b_1, b_1 \rightarrow b \hat{k}_1^0 \\ b_1b_1, b_1 \rightarrow c \hat{k}_1^0 \\ \bar{r}_1 \bar{r}_1, \bar{r}_1 \rightarrow b \hat{k}_1^0 \\ \bar{r}_1 \bar{r}_1, \bar{r}_1 \rightarrow b \hat{k}_1^0 \\ \bar{r}_1 \bar{r}_1, \bar{r}_1 \rightarrow b \hat{k}_1^0 \\ \bar{r}_1 \bar{r}_1, \bar{r}_1 \rightarrow c \hat{k}_1^0 \\ \bar{r}_1 \bar{r}_1, \bar{r}_1 \rightarrow c \hat{k}_1^0 \\ \bar{r}_2 \bar{r}_2, \bar{r}_2 \rightarrow \bar{r}_1 + Z \\ \bar{r}_2 \bar{r}_2, \bar{r}_2 \rightarrow \bar{r}_1 + k \end{array}$	0 $2 e, \mu$ (SS) $0.2 e, \mu$ $0.2 e, \mu$ 0 $2 e, \mu(Z)$ $3 e, \mu(Z)$ $1 e, \mu$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 6 jets + 2 b	Yes Yes Yes Yes Yes Yes Yes	3.2 13.2 1.7/13.3 1.7/13.3 3.2 20.3 13.3 20.3	k. 940 GeV j. 325-635 GeV j17-170 GeV 320-720 GeV ji 90-323 GeV ji 320-600 GeV		$\begin{split} m \hat{k}_{1}^{0} &< 100 \text{GeV} \\ m \hat{k}_{1}^{0} &< 150 \text{GeV}, m(\hat{k}_{1}^{0}) = 1\pi (\hat{k}_{1}^{0}) + 100 \text{GeV} \\ m \hat{k}_{1}^{0} &= 2\pi (\hat{k}_{1}^{0}), m \hat{k}_{1}^{0} = 55 \text{GeV} \\ m \hat{k}_{1}^{0} &= 16 \text{GeV} \\ m \hat{k}_{1}^{0} &= 16 \text{GeV} \\ m \hat{k}_{1}^{0} &= 150 \text{GeV} \\ m \hat{k}_{1}^{0} &= 150 \text{GeV} \\ m \hat{k}_{1}^{0} &= 16 \text{GeV} \end{split}$	1606.08772 ATLAS-CONF-2016.037 1209.2102, ATLAS-CONF-2016-077 1506.0846, ATLAS-CONF-2016-077 1604.07773 1403.5222 ATLAS-CONF-2016-038 1506.08616
EW direct	$\begin{array}{l} \tilde{\ell}_{1,\mathbf{R}}\tilde{\ell}_{1,\mathbf{R}},\tilde{\ell} \rightarrow \ell R_1^0\\ \tilde{\kappa}_1^+\tilde{\kappa}_1^-,\tilde{\kappa}_1^+\rightarrow \tilde{\ell}\nu(\ell \bar{\nu})\\ \tilde{\kappa}_1^+\tilde{\kappa}_1^-,\tilde{\kappa}_1^+\rightarrow \tilde{\nu}(\ell \bar{\nu})\\ \tilde{\kappa}_1^+\tilde{\kappa}_2^0\rightarrow \tilde{\kappa}_1^+\tilde{\kappa}_2^+\ell \tilde{\kappa}_1^0\\ \tilde{\kappa}_1^+\tilde{\kappa}_2^0\rightarrow W_1^0\tilde{\kappa}_2^+\tilde{\kappa}_1^0\\ \tilde{\kappa}_1^+\tilde{\kappa}_2^0\rightarrow W_1^0\tilde{\kappa}_1^0\\ \tilde{\kappa}_1^+\tilde{\kappa}_2^0\rightarrow W_1^0\tilde{\kappa}_1^0\\ \tilde{\kappa}_1^+\tilde{\kappa}_2^0\rightarrow \tilde{\kappa}_1^0\\ \tilde{\kappa}_1^+\tilde{\kappa}_2^0\rightarrow \tilde{\kappa}_1^0\\ \tilde{\kappa}_1^+\tilde{\kappa}_2^0\rightarrow \tilde{\kappa}_1^0\\ \tilde{\kappa}_1^+\tilde{\kappa}_1^0\end{pmatrix} \text{weak prod}\\ \text{GGM (bino NLSP) weak prod}\\ \text{GGM (bino NLSP) weak prod} \end{array}$	$2e, \mu$ $2e, \mu$ 2τ $3e, \mu$ $2\cdot 3e, \mu$ $\tau/\gamma\gamma = e, \mu, \gamma$ $4e, \mu$ $1e, \mu + \gamma$ 2γ	0 - 0-2 jets 0-2 k 0 - -	Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 14.8 13.3 20.3 20.3 20.3 20.3 20.3 20.3	i 90-335 GeV \$\$i_1^*\$ 640 GeV \$\$i_1^*\$ 590 GeV \$\$i_1^*\$, \$\$i_2^*\$ 1.0 TeV \$\$i_1^*\$, \$\$i_2^*\$ 425 GeV \$\$i_1^*\$, \$\$i_2^*\$ 270 GeV \$\$i_{1,3}^*\$ 035 GeV \$\$W\$ 115-370 GeV \$\$W\$ 590 GeV	$m[\tilde{x}_{1}^{(2)}]m[$	$\begin{split} & m[\tilde{e}_{1}^{2}] {=} O GeV \\ & I GeV, m(\tilde{e}_{1}^{2}) {=} O S[m[\tilde{e}_{1}^{2}) {+} m[\tilde{e}_{1}^{2}])) \\ & m[\tilde{e}_{1}^{2}] {=} O GeV, m(\tilde{e}_{1}^{2}) {=} S[m[\tilde{e}_{1}^{2}] {+} m[\tilde{e}_{1}^{2}])) \\ & m[\tilde{e}_{1}^{2}] {=} m[\tilde{e}_{1}^{2}] {=} D S[m[\tilde{e}_{1}^{2}] {+} m[\tilde{e}_{1}^{2}])) \\ & m[\tilde{e}_{1}^{2}] {=} m[\tilde{e}_{1}^{2}] {=} m[\tilde{e}_{1}^{2}] {=} D S[m[\tilde{e}_{1}^{2}] {+} m[\tilde{e}_{1}^{2}])) \\ & m[\tilde{e}_{1}^{2}] {=} m[\tilde{e}_{1}^{2}] {=} m[\tilde{e}_{1}^{2}] {=} D S[m[\tilde{e}_{1}^{2}] {+} m[\tilde{e}_{1}^{2}])) \\ & m[\tilde{e}_{1}^{2}] {=} m[\tilde{e}_{1}^{2}] {=} m[\tilde{e}_{1}^{2}] {=} D S[m[\tilde{e}_{1}^{2}] {+} m[\tilde{e}_{1}^{2}])) \\ & c_{2} < 1 rem \\ & c_{2} < 1 rem \end{split}$	1403 5294 ATLAS-CONF-2018-096 ATLAS-CONF-2018-093 ATLAS-CONF-2018-096 1403 5294, 1402 7029 1501.07110 1501.07110 1405.5086 1507.05493
Long-fived particles	Direct $\xi_1^* \xi_2^*$ prod., long-lived j Direct $\xi_1^* \xi_2^*$ prod., long-lived j Stable, stopped j R-hadron Stable j R-hadron Metastable j R-hadron GMSB, stable τ , $\xi_1^0 \rightarrow \tau (x, p) + \tau$ GMSB, $\xi_1^0 \rightarrow \gamma \sigma$, long-lived ξ_2^0 ξ_2^* , $\xi_1^0 \rightarrow \nu \gamma (pp)/(pp)/$ GGM g_2^* , $\xi_1^0 \rightarrow Z G$	$ \begin{array}{c} \stackrel{+}{\underset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{1$	1 jet - 1-5 jets - - - - μ - ts -	Yes Yes · · Yes ·	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	\$\vec{k}_1^*\$ 270 GeV \$\vec{k}_1^*\$ 495 GeV \$\vec{k}_2^*\$ 850 GeV \$\vec{k}_2^*\$ 857 GeV \$\vec{k}_1^*\$ 537 GeV \$\vec{k}_1^*\$ 440 GeV \$\vec{k}_1^*\$ 1.0 TeV \$\vec{k}_1^*\$ 1.0 TeV	1.58 TeV 1.57 TeV	$\begin{split} m(\tilde{\ell}_1^*) &\leftarrow m(\tilde{\ell}_2^*) \sim 160 \; MeV, \; \tau(\tilde{\ell}_1^*) = 0.2 \; n_{\rm B} \\ m(\tilde{\ell}_1^*) &\leftarrow m(\tilde{\ell}_2^*) \sim 160 \; MeV, \; \tau(\tilde{\ell}_1^*) < 15 \; n_{\rm B} \\ m(\tilde{\ell}_2^*) &= 100 \; GeV, \; 10 \; \mu{\rm s} < \tau(\tilde{\varrho}_1^*) < 15 \; n_{\rm B} \\ m(\tilde{\ell}_2^*) &= 100 \; GeV, \; \tau > 10 \; n_{\rm B} \\ 10 \; {\rm ctan}/\tau \leq 50 \\ 1 \; < \pi(\tilde{\ell}_1^*) < < 3n_{\rm B} \; {\rm SPSB} \; {\rm model} \\ 1 \; < \pi(\tilde{\ell}_1^*) < 740 \; {\rm mrn}, \; \tau r(\tilde{\varrho}) = 1.3 \; {\rm TeV} \\ 8 \; < cr(\tilde{\ell}_1^*) < 480 \; {\rm mrn}, \; \tau r(\tilde{\varrho}) = 1.1 \; {\rm TeV} \end{split}$	1310.3675 1506.05332 1310.6584 1606.05129 1604.04520 1411.5735 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{l} LFV pp \rightarrow \mathfrak{d}_r + X, \mathfrak{d}_r \rightarrow \mathfrak{spl}(er/p) \\ Binear \; RPV \; CMSSM \\ \mathcal{K}_1^+ \mathcal{K}_1^-, \mathcal{K}_1^+ \rightarrow \mathcal{W}_1^0, \mathcal{K}_2^0 \rightarrow \mathfrak{sev}, \mathfrak{splv}, \\ \mathcal{K}_1^+ \mathcal{K}_1^-, \mathcal{K}_1^+ \rightarrow \mathcal{W}_1^0, \mathcal{K}_1^0 \rightarrow \mathfrak{rrv}_{e,ern} \\ \mathcal{B}_2^-, \mathcal{B}^- \rightarrow \mathcal{H}_2^0, \mathcal{K}_1^0 \rightarrow \mathfrak{q} \mathfrak{q} \mathfrak{q} \\ \mathcal{B}_2^-, \mathcal{B}^- \rightarrow \mathcal{H}_2^0, \mathcal{K}_1^0 \rightarrow \mathfrak{q} \mathfrak{q} \mathfrak{q} \\ \mathcal{B}_2^-, \mathcal{B}^- \mathcal{H}_2^0, \mathcal{K}_1^0 \rightarrow \mathfrak{q} \mathfrak{q} \mathfrak{q} \\ \mathcal{B}_2^-, \mathcal{B}^- \mathcal{H}_2^0, \mathcal{H}_1^- \rightarrow \mathfrak{q} \mathfrak{q} \mathfrak{q} \\ \mathcal{B}_2^-, \mathcal{B}^- \mathcal{H}_2^0, \mathcal{H}_1^- \rightarrow \mathfrak{q} \mathfrak{q} \mathfrak{q} \\ \mathcal{B}_2^-, \mathcal{H}_2^-, \mathcal{H}_1^- \rightarrow \mathfrak{h} \mathfrak{se} \\ \mathcal{H}_1^-, \mathcal{H}_1^-, \mathcal{H}_2^- \\ \mathcal{H}_1^-, \mathcal{H}_2^-, \mathcal{H}_2^- \end{pmatrix} $	$r = e \mu, e \tau, \mu \tau$ $2 e, \mu$ (SS) $\mu \mu \nu = 4 e, \mu$ r = 0 = 4 0 = 4 $1 e, \mu = 8$ $1 e, \mu = 8$ 0 $2 e, \mu$	-5 large- <i>R</i> je -5 large- <i>R</i> je -10 jets/0-4 -10 jets/0-4 2 jets + 2 <i>b</i> -2 <i>b</i>	· Yes Yes ets · ets ·	3.2 20.3 13.3 20.3 14.8 14.8 14.8 14.8 15.4 20.3	\$. \$.\$ \$.\$ \$.14 T \$	1.9 TeV 1.45 TeV eV V 1.55 TeV 1.75 TeV 1.4 TeV	$\begin{split} \lambda_{i11}^{\prime} &= 0.11, \lambda_{i12} + u_{i12} = 0.07 \\ m[g] &= m[g], c_{12,0} < 1 \mbox{ rm} \\ m[k_1^{\prime}] > 400 \mbox{ CeV}, \lambda_{i12} \neq 0 \mbox{ (k-1)}, 2) \\ m[k_1^{\prime}] > 0.2 \times m[k_1^{\prime}], \lambda_{i12} \neq 0 \\ B(\phi) = B[(\phi) = B[(\phi) = B[(\phi) = B[(\phi) = B(\phi) = B(\phi) = B(\phi) = B(\phi) = B(\phi) \\ m[k_1^{\prime}] &= 200 \mbox{ GeV} \\ m[k_1^{\prime}] &= 200 \mbox{ GeV} \\ B25 \mbox{ GeV} < m(\beta_1) < 850 \mbox{ GeV} \\ BB((\beta_1 \to \phi/\mu) > 20\% \end{split}$	1607.08079 1404.2500 ATLAS-CONF-2018-075 1405.5086 ATLAS-CONF-2018-057 ATLAS-CONF-2018-057 ATLAS-CONF-2018-094 ATLAS-CONF-2018-094 ATLAS-CONF-2018-094 ATLAS-CONF-2018-024 ATLAS-CONF-2018-025
Other	Scalar charm, $\tilde{c} \rightarrow \tilde{\mathcal{K}}_{1}^{O}$	0	2 c	Yes	20.3	2 510 GeV		$m[\tilde{\ell}_1^0] < 200 GeV$	1501.01325
	*Only a selection of th	e available m	ass limits	s on ne	^{nv} 1	D ⁻¹	1	Mass scale [TeV]	-

states or phenomena is shown.

Summary and Conclusions

With the higher centre-of-mass energy, the outstanding results expected from the Run 2 are the direct searches for new physics. The strategy is to look exhaustively at all possible scenarios and topologies.

A very large number of event topologies has been studied to search for departures from the SM. No significant ones have been found so far.

The search program at LHC relies greatly on the TH community for two key aspects:

- The modeling of SM processes, ATLAS has moved to state-of-the-art simulation for most processes at Run 2 already.
- Proposing models of theoretical relevance to motivate searches of unexplored domains of phase space.

The LHC is now half way through the Run-2, with approximately 1/4 of the data expected for the entire Run 2 (reappraised goal of 150 fb⁻¹).

This dataset is just a small fraction of the Run 2 dataset (~10%) and very small fraction of the total HL-LHC dataset (~1%). This is just the beginning and there are any more exciting challenges ahead!