

Dark Matter Theory after first results from LHC 13

Pedro Schwaller Johannes Gutenberg Universität Mainz

Zurich Phenomenology Workshop ETH Zurich January 10, 2017

Dark Matter Evidence

Astrophysical observations and simulations

Nature & interactions with visible matter unknown

What is the Dark Matter?

Allowed Mass Range

$$M_{\rm DM} \gtrsim 10^{-22} \ {\rm eV}$$

"Fuzzy DM"

Hu et al, 2000 Witten et al, 2016 $M_{\rm DM} \lesssim 10^2 M_{\odot}$

primordial Black Holes

WIMP Miracle

- Correct relic abundance for $\langle \sigma v \rangle \sim \mathrm{pb}$
- Mass range $10^{\pm 2} \text{TeV}$

WIMPs under pressure

Direct Detection → L. Baudis talk

WIMPs @ Colliders

• Collider

- MET + X (mono-X) signature
 - X = jet, photon, W, Z, single-top, tt, hadronic W/Z,...

m_A [GeV]

WIMPs @ LHC

WIMPs @ LHC

Di-jet resonance - expect strong limits from LHC

WIMPs @ LHC

Where else to look?

- Non-minimal models
- Displaced frontier
- Simplified models for displaced DM
- Gravitational waves as window to dark sector

Non-minimal models

- Hidden sectors
- Asymmetric dark matter
- SIMP
- Dark QCD
- Dynamical Dark Matter
- Self-interacting DM

Bai, PS, PRD 89, 2014

Dark QCD

- SU(N) dark sector with neutral
 "dark quarks"
- Confinement scale
 - $\Lambda_{\mathrm{darkQCD}}$
- DM is composite
 "dark proton"
- "Dark pions" unstable, long lived

Bai, PS, PRD 89, 2014

13

Dark QCD

Advantages:

- Alternative explanation of relic density
- Avoids stringent direct/indirect detection limits
- Self interaction solves small scale structure problems

Dark QCD

- Asymmetric DM motivates $\Lambda_{\rm Dark} \sim few~GeV$

+ e.g.
$$\frac{\Omega_{\rm DM}}{\Omega_{\rm B}}\sim \frac{M_{\rm DM}}{M_{\rm B}}$$

• Dark pion lifetime possibly macroscopic

$$c\tau(\pi_D \to \mathrm{SM}) \sim \frac{M_X^4}{m_{\pi_D}^5} \sim \mathrm{cm} \times \left(\frac{\mathrm{M}_{\mathrm{X}}}{\mathrm{TeV}}\right)^4 \left(\frac{\mathrm{GeV}}{\mathrm{m}_{\pi_{\mathrm{D}}}}\right)^5$$

New signature: Emerging Jets

Han, Strassler, Zurek, 2007

Reach ATLAS/CMS

- Optimistic scenario (no non-collisional BGs)
- More realistic studies under way at ATLAS/CMS

The displaced frontier and dark matter

The displaced frontier

- Exotic collider objects:
 - Long lived charged particles
 - Displaced decays, vertices
 - Collimated objects: Dark jets, lepton jets
- No (intrinsic) SM backgrounds
 - Can design BG free searches
 - Sensitivity scales linearly with luminosity → great for high lumi LHC

charged state (chargino)

. The efficiency for decaying charginos with the

Higgsinos

- For doublets: Shorter lifetime! Requiring TRT hits (~30 cm transverse distance) not viable
- Option 1: Bring the tracker
 closer
- 14/100 TeV analysis in progress

Number of charged tracks for $\mu = 1.1$ TeV and $c\tau = 6.6$ mm 400 3000 fb^{-1} 350 Transverse distance from beamline (mm) 300 \bigcirc 100 TeV. 250200 $(j_1),$ MET >15055 100 500 GeV5650137 769 2350 3699 3771 3806 3772 1233 21.2376783200 -22 6 -60 -44

Mahbubani, PS, Zurita, in progress

Higgsinos

- For doublets: Shorter lifetime! Requiring TRT hits (~30 cm transverse distance) not viable
- Option 2: Use forward direction

Simplified models for displaced DM

Simplified models

- Successful way to present collider searches in a less model dependent way
 - Two masses (DM & mediator) and two couplings
- Minimal extension to include displaced decays
 - Add second "dark" state with mass $m_2 > m_{\rm DM}$
 - Lifetime $\Gamma(\chi_2 \to \chi_1 X)$
- Underlying models e.g. "GMSB SUSY" and "split Higgs portal"

Buchmueller, De Roeck, McCullough, PS, Yu, in progress

Signatures

- X can be any set of SM particles
- Can also imagine charged χ_2
- Use ISR (jets, Z, photon) + MET to trigger

Buchmueller, De Roeck, McCullough, PS, Yu, in progress

Gravitational Waves and DM

Dark QCD

- Remember that model from before!
- Nonabelian SU(N) dark sector, confinement scale Λ_d
- n_f light/massless flavours

 $n_f = 0$

Glueball DM

PT from center symmetry restoration

 $n_f > 0$

Dark Baryons or Dark Pions

Chiral Symmetry Breaking

Phase Transition

- Confinement/chiral symmetry breaking phase transition at scale Λ_d
 - DM: $\Lambda_d \sim M_{\rm DM}$ (MeV 100 TeV)
 - Naturalness: $\Lambda_d \sim \text{few} \times \Lambda_{\text{QCD}}$
- First order PT in large class of models
- Still possible if LHC finds no new physics

Phase Diagram

PS, 2016

Cosmological Phase Transitions

• Early Universe in symmetric phase (e.g. unbroken electroweak symmetry)

GWs from PTs

First order PT → Bubbles nucleate, expand

Bubble collisions → Gravitational Waves

$$0.0 \begin{bmatrix} 0.0001 \\ 0.01 \\ 0 \end{bmatrix} = 0.001 \\ 0.01 \\ 0 \end{bmatrix} = 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.1 \end{bmatrix}$$

• Redshift:

 \bullet

$$f = \frac{a_*}{a_0} H_* \frac{f_*}{H_*} = 1.59 \times 10^{-7} \text{ Hz} \times \left(\frac{g_*}{80}\right)^{\frac{1}{6}} \times \left(\frac{T_*}{1 \text{ GeV}}\right) \times \frac{f_*}{H_*}$$
Peak regions: $k/\beta \approx (1-10)$

$$f_{\text{peak}}^{(B)} = 3.33 \times 10^{-8} \text{ Hz} \times \left(\frac{g_*}{80}\right)^{\frac{1}{6}} \left(\frac{T_*}{1 \text{ GeV}}\right) \left(\frac{\beta}{\mathcal{H}_*}\right)$$

GW Soundscape

Summary

- Quest for dark matter is more pressing than ever
- Non-minimal models can motivate new collider searches
 - Emerging jets
 - Displaced frontier new simplified models
- GWs could be unique window into the physics of dark sector

Primordial BH Dark Matter

SU(N) - PT

- Consider $SU(N_d)$ with n_f massless flavours
- PT is first order for
 - $N_d \geq 3$, $n_f = 0$
 - + $N_d \geq 3$, $3 \leq n_f < 4N_d$

Svetitsky, Yaffe, 1982 M. Panero, 2009

Pisarski, Wilczek, 1983

- Not for:
 - $n_f = 1$ (no global symmetry, no PT)
 - $n_f = 2$ (not yet known)