ABMP16 PDFs

S.Alekhin (*Univ. of Hamburg & IHEP Protvino*)

(in collaboration with J.Blümlein, S.Moch, and R.Plačakytė)

- HERA I+II data: $\alpha_s(M_z)$, m_c , and m_b
- Drell-Yan data from the LHC and Tevatron: Isospin asymmetry and d/u at large x
 sa, Blümlein, Moch, Plačakytė, hep-ph/1508.07923
- t-quark data: m₊ and gluon distribution
- Charm production data from NOMAD and CHORUS: strange sea

sa, Blümlein, Caminada, Lipka, Lohwasser, Moch, Petti, Plačakytė hep-ph/1404.6469

sa, Blümlein, Moch, Plačakytė, hep-ph/1701.05838

The fit ingredients

```
DATA:
       DIS NC/CC inclusive (HERA I+II added, no deuteron data included)
       DIS NC charm production (HERA)
       DIS CC charm production (HERA, NOMAD, CHORUS, NuTeV/CCFR)
       fixed-target DY
       LHC DY distributions (ATLAS, CMS, LHCb)
       t-quark data from the LHC and Tevatron
       deuteron data are excluded
QCD:
       NNLO evolution
       NNLO massless DIS and DY coefficient functions
       NLO+ massive DIS coefficient functions (FFN scheme)
          NLO + NNLO(approx.) corrections for NC
          - NNLO CC at Q>> m
          running mass
       NNLO exclusive DY (FEWZ 3.1)
       NNLO inclusive ttbar production (pole / running mass)
       Relaxed form of (dbar-ubar) at small x
Power corrections in DIS:
       target mass effects
       dynamical twist-4 terms
```

Most recent DY inputs

Filtering of the LHCb data has been performed:

- a bump at 7 Tev and Y=3.275(not confirmed by the LHCb data at 8 TeV)
- and excess at 8 TeV and Y=2.125(not confirmed by the CMS data at 8 TeV)

The CMS data at 8 TeV are much smoother than the ones at 7 TeV:

 $\chi^2 = 17/22 \text{ versus } 22/11$

ATLAS W&Z at 13 TeV

ATLAS, hep-ex/1603.09222

Collider W&Z data used in the fit

Experiment		ATI	ATLAS		CMS		DØ		LHCb		
√s (TeV)		7	13	7	8	1.96		7	8		
1	Final states		$W^+ \rightarrow l^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow e^+ v$	$W^+ \rightarrow \mu^+ \nu$	$Z \rightarrow e^+e^-$	$W^+ \rightarrow \mu^+ \nu$	
			$W^- \rightarrow l^- \nu$	$W^- \to \mu^- \nu$	$W^- \to \mu^- \nu$	$W^- \to \mu^- \nu$	$W^- \rightarrow e^- v$	$W^- \rightarrow \mu^- \nu$		$W^- \rightarrow \mu^- \nu$	
		$Z \rightarrow l^+ l^-$	$Z \rightarrow l^+ l^-$	(asym)		(asym)	(asym)	$Z \rightarrow \mu^+ \mu^-$		$Z \rightarrow \mu^{+}\mu^{-}$	
Cut o	Cut on the lepton P_T		$P_T^e > 25 \mathrm{GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^u > 25 \text{ GeV}$	$P_T^{\mu} > 25 \mathrm{GeV}$	$P_T^e > 25 \mathrm{GeV}$	$P_T^u > 20 \text{ GeV}$	$P_T^e > 20 \text{ GeV}$	$P_T^{\mu} > 20 \mathrm{GeV}$	
Lun	Luminosity (1/fb)		0.081	4.7	18.8	7.3	9.7	1	2	2.9	
	Reference		[26]	24	[25]	[23]	[22]	19	21	[20]	
	NDP		6	11	22	10	13	31	17	32	
	present analysis a	31.0	9.2	22.4	16.5	17.6	19.0	45.1	21.7	40.0	
	CJ15 6	-	_	-	_	20	29	-	-	_	
	CT14 [7]	42	_	- b	-	-	34.7	-	-	_	
χ^2	JR14 8	-	_	-	_	-	-	_	_	_	
	HERAFitter [197]	-	-	-	-	13	19	-	-	_	
	MMHT14 9	39	_	-	-	21	-	_	-	_	
	NNPDF3.0 [10]	35.4	_	18.9	-	-	-	-	-	-	

^a The ABM12 [1] analysis has used older data sets from CMS and LHCb.

Obsolete/superseded/low-accuracy Tevatron and LHC data are not used

Thorne, QCD@LHC2016

	no. points	$\operatorname{NLO}\chi^2_{pred}$	NLO χ^2_{new}	NNLO χ^2_{pred}	NNLO χ^2_{new}
$\sigma_{tar{t}}$ Tevatron +CMS+ATLAS	18	19.6	20.5	14.7	15.5
LHCb 7 TeV $W+Z$	33	50.1	45.4	37.1	36.7
LHCb 8 TeV $W+Z$	34	77.0	58.9	76.1	67.2
LHCb 8TeV e	17	37.4	33.4	30.0	27.8
CMS 8 TeV W	22	32.6	18.6	57.6	29.4
CMS 7 TeV $W+c$	10	8.5	10.0	8.7	8.0
D0 e asymmetry	13	22.2	21.5	27.3	22.9
total	3738/3405	4375.9	4336.1	3768.0	3739.3

The sum of χ^2/NDP for the DY data by LHCB, CMS, and D0:

184/119 (MMHT16) 171/119 (ABMP16, no filtering)

account of other DY data increases the difference

^b For the statistically less significant data with the cut of $P_T^{\mu} > 35$ GeV the value of $\chi^2 = 12.1$ was obtained.

Deuteron corrections in the PDF fits

Spread between different deuteron models O(%); quite big for the purposes of precision measurements

DY data help to keep accuracy of the PDF determination avoiding uncertainty due to the modeling of nuclear effects

Impact of the forward Drell-Yan data

- Relaxed form of the sea iso-spin asymmetry I(x) at small x; Regge-like behaviour is recovered only at $x\sim10^{-6}$; at large x it is still defined by the phase-space constraint
- Good constraint on the d/u ratio w/o deuteron data → independent extraction of the deuteron corrections Accardi, Brady, Melnitchouk, Owens, Sato hep-ph/1602.03154;
- Big spread between different PDF sets, up to factor of 30 at large x → poor control of the background to BSM effects without constraints from the DY data

ATLAS strange sea determinations

- ABM update (NuTeV/CCFR+NOMAD+CHORUS) demonstrate good agreement with the CMS result
- The ATLAS(2011) strange-sea in enhanced, however it is correlated with the d-quark sea suppression → disagreement with the FNAL-E-866 data

The result is confirmed with improved accuracy → disagreement with the neutrino-beam results??

- Uncertainty of ~5% is achieved at x around 0.1
- NuTeV/CCFR data play no essential role → impact of the nuclear corrections is greatly reduced (NOMAD and CHORUS give the ratio CC/incl.)

Strong coupling constant

- \bullet Combination of the DY data (disentangle PDFs) and the DIS ones (constrain α_{ϵ})
- ullet Run-II data pull α_s up by 0.001
- \bullet the value of α_s is still lower than the PDG one: pulled up by the SLAC and NMC data; pulled down by the BCDMS and HERA ones
- only SLAC determination overlap with the PDG band provided the high-twist terms are taken into account

Electroweak vacuum stability

mr: Kniehl, Pikelner, Veretin CPC 206, 84 (2016)

Vacuum stability is quite sensitive to the t-quark mass

t-quark mass from the single-top data

- Electroweak production \rightarrow reduced impact of α_s and the PDF umcertainties
- HATHOR framework
 t-channel: NNLO
 Brucherseifer, Caola, Melnikov PLB 736, 58 (2014)
 s-channel: NNLO threshold. resum.
 sa, Moch, Thier hep-ph/1608.05212
- Different PDFs prefer value of

$$m_{\text{m}}$$
 (m₁) ~160± 3.5 GeV

NNPDF goes higher by 3 GeV.

 The CT14 and MMHT14 go higher by 3 GeV with the ttbar channel

Summary

The improvements summarized in the new PDF set:

- deuteron data are replaced by the Drell-Yan ones from the LHC and Tevatron → reduced theoretical uncertainties in PDFs, in particular in d/u at large x
- the small-x iso-spin sea asymmetry is relaxed and turns negative at $x\sim10^{-3}$; an onset of the Regge asymptotics still may occur at $x<10^{-5}$
- improved strange sea determination, particularly at large x
- moderate increase in the large-x gluon distribution due to impact of the ttbar data
- − HERA I+II data included \rightarrow improved determination of $m_e(m_e)$;

$$m_c(m_c)=1.252\pm0.018 \text{ GeV}$$

 $m_b(m_b)=3.83\pm0.12 \text{ GeV}$
 $m_t(m_t)=160.9\pm1.1 \text{ GeV}$

$$\alpha_s(M_z) = 0.1145(9)$$
 DIS
 $\alpha_s(M_z) = 0.1147(8)$ DIS+ttbar

EXTRAS

Computation accuracy

- Accuracy of O(1 ppm) is required to meet uncertainties in the experimental data \rightarrow O(10⁴ h) of running FEWZ 3.1 in NNLO
- An interpolation grid a la FASTNLO is used

NNLO DY corrections in the fit

The existing NNLO codes (DYNNLO, FEWZ) are quite time-consuming → fast tools are employed (FASTNLO, Applgrid,.....)

- the corrections for certain basis of PDFs are stored in the grid
- the fitted PDFs are expanded over the basis
- the NNLO c.s. in the PDF fit is calculated as a combination of expansion coefficients with the pre-prepared grids

The general PDF basis is not necessary since the PDFs are already constrained by the data, which do not require involved computations → use as a PDF basis the eigenvalue PDF sets obtained in the earlier version of the fit

 $\mathbf{P}_0 \pm \Delta \mathbf{P}_0$ – vector of PDF parameters with errors obtained in the earlier fit

- **E** error matrix
- **P** current value of the PDF parameters in the fit
- store the DY NNLO c.s. for all PDF sets defined by the eigenvectors of E
- the variation of the fitted PDF parameters ($\mathbf{P} \mathbf{P}_0$) is transformed into this eigenvector basis
- the NNLO c.s. in the PDF fit is calculated as a combination of transformed (${\bf P}$ ${\bf P}_0$) with the stored eigenvector values

Impact of the W-, Z-data

DY at large rapidity

• The data can be evidently used for consolidation of the PDFs, however, unification of the theoretical accuracy is also needed

ABM	СТ	MMHT	NNPDF
Interpolation of accurate NNLO grid (a la FASTNLO)	NNLL (ResBos)	NLO + NNLO K-factor	NLO + NNLO C-factors (y-dependent K-factors)

PDF sets	m _c [GeV]	m_c renorm.	theory method $(F_2^c \text{ scheme})$	theory accuracy for heavy quark DIS Wilson coeff.	χ^2 /NDP for HERA data [127] with xFitter [128, 129]	
ABM12 [2] a	1.24 + 0.05	$\overline{\rm MS} \ m_c(m_c)$	FFNS $(n_f = 3)$	NNLOapprox	65/52	66/52
CJ15 [<u>1</u>]	1.3	$m_c^{ m pole}$	SACOT [122]	NLO	117/52	117/52
CT14 [3] b						
(NLO)	1.3	$m_c^{ m pole}$	SACOT(χ) [123]	NLO	51/47	70/47
(NNLO)	1.3	$m_c^{ m pole}$	SACOT(χ) [123]	NLO	64/47	130/47
HERAPDF2.0 [4]						
(NLO)	1.47	$m_c^{ m pole}$	RT optimal [125]	NLO	67/52	67/52
(NNLO)	1.43	$m_c^{ m pole}$	RT optimal [125]	NLO	62/52	62/52
JR14 [<u>5</u>] ^c	1.3	$\overline{\rm MS} \ m_c(m_c)$	FFNS $(n_f = 3)$	NNLOapprox	62/52	62/52
MMHT14 [6]						
(NLO)	1.4	$m_c^{ m pole}$	RT optimal [125]	NLO	72/52	78/52
(NNLO)	1.4	$m_c^{ m pole}$	RT optimal [125]	NLO	71/52	83/52
NNPDF3.0 [7]						
(NLO)	1.275	$m_c^{ m pole}$	FONLL-B [124]	NLO	58/52	60/52
(NNLO)	1.275	$m_c^{ m pole}$	FONLL-C [124]	NLO	67/52	69/52
PDF4LHC15 [8] d	_	-	FONLL-B [124]	-	58/52	64/52
	_	-	RT optimal [125]	_	71/52	75/52
	_	_	SACOT(x) [123]	_	51/47	76/47

Accardi, et al. hep-ph/1603.08906

Factorization scheme benchmarking

- Data allow to discriminate factorization schemes
- FFN scheme works very well in case of correct setting (running mass definition and correct value of m_c) \rightarrow no traces of big logs due to resummation

x_{\min}	$x_{ m max}$	Q_{\min}^2 (GeV)	$Q_{\rm max}^2~({\rm GeV})$	$\Delta \chi^2$ (DIS)	$N_{\rm dat}^{ m DIS}$	$\Delta \chi^2$ (HERA-I)	$N_{\rm dat}^{ m hera-I}$
$4 \cdot 10^{-5}$	1	3	10^{6}	72.2	2936	77.1	592
$4 \cdot 10^{-5}$	0.1	3	10^{6}	87.1	1055	67.8	405
$4 \cdot 10^{-5}$	0.01	3	10^{6}	40.9	422	17.8	202
$4 \cdot 10^{-5}$	1	10	10^{6}	53.6	2109	76.4	537
$4 \cdot 10^{-5}$	1	100	10^{6}	91.4	620	97.7	412
$4 \cdot 10^{-5}$	0.1	10	10^{6}	84.9	583	67.4	350
$4 \cdot 10^{-5}$	0.1	100	10^{6}	87.7	321	87.1	227

We conclude that the FFN fit is actually based on a less precise theory, in that it does not include full resummation of the contribution of heavy quarks to perturbative PDF evolution, and thus provides a less accurate description of the data

NNPDF PLB 723, 330 (2013)

High twists at small x

- $H_{\tau}(x)$ continues a trend observed at larger x; $H_{\tau}(x)$ is comparable to 0 at small x
- h_{\pm} =0.05±0.07 \rightarrow slow vanishing at $x \rightarrow 0$
- $\Delta \chi^2 \sim -40$

Harland-Lang, Martin, Motylinski, Thorne hep-ph/1601.03413

Abt, et al. hep-ex/1604.02299

Implication for(of) the single-top production

- ATLAS and CMS data on the ratio t/tbar are in a good agreement
- The predictions driven by the froward DY data are in a good agreement with the single-top data (N.B.: ABM12 is based on the deuteron data → consistent deuteron correction was used) talks by Petti at DIS2016

Single-top production discriminate available PDF sets and can serve as a standard candle process

Inclusive HERA I+II data

H1 and ZEUS hep-ex/1506.06042

>5 GeV² 1354/1092=1.24

>10 GeV² 1228/1007=1.22

HERA charm data and m₂(m₂)

H1/ZEUS ZPC 73, 2311 (2013)

 $m_c(m_c)=1.246\pm0.023$ (h.o.) GeV NNLO

Kiyo, Mishima, Sumino hep-ph/1510.07072

 Approximate NNLO massive Wilson coefficients (combination of the threshold corrections, high-energy limit, and the NNLO massive OMEs)

Kawamura, Lo Presti, Moch, Vogt NPB 864, 399 (2012) Update with the pure singlet massive OMEs

Ablinger et al. NPB 890. 48 (2014)

- → improved theoretical uncertainties
- Running-mass definition of m

$$m_c(m_c)=1.252\pm0.018$$
(exp.) GeV

$$m_c(m_c)=1.24\pm0.03(exp.)$$
 GeV

RT optimal

$$X^2/NDP = 82/52$$

$$m_c(pole)=1.25 \text{ GeV}$$

NNLO

FONLL

$$X^{2}/NDP = 60/47$$

$$m_c(pole)=1.275 \text{ GeV}$$

NNLO

S-ACOT-χ

NNLO

HERA bottom data and m_b(m_b)

ZEUS JHEP 1409, 127 (2014)

$$\chi^2/NDP = 16/17$$

H1 EPJC 65, 89 (2010)

$$\chi^{2}/NDP = 5/12$$

$$m_b(m_b) = 3.83 \pm 0.12 (exp.) GeV$$

ttbar production with pole and Msbar mass

HATHOR (NNLO terms are checked with TOP++)

Langenfeld, Moch, Uwer PRD 80, 054009 (2009)

Running mass definition provides nice perturbative stability Czakon, Fiedler, Mitov hep-ph/1303.6254

- m_{*}(m_{*})=160.9±1.1(exp.) GeV NNLO
- $\alpha_s(M_7)=0.1145(9) \rightarrow 0.1147(8)$ NNLO
- moderate change in the large-x gluon distribution

NOMAD charm data

The data on ratio 2µ/incl. CC ratio with the 2µ statistics of 15000 events (much bigger than in earlier CCFR and NuTeV samples).

NOMAD NPB 876, 339 (2013)

Systematics, nuclear corrections, etc. cancel in the ratio

- pull down strange quarks at x>0.1 with a sizable uncertainty reduction
- $-m_c(m_c)$ =1.23±0.03(exp.) GeV is comparable to the ABM12 value

The semi-leptonic branching ratio B_{μ} is a bottleneck

weighted average of the charmed-hadron rates

$$B_{\mu}(E_{\nu}) = \sum_{h} r^{h}(E_{\nu})B^{h} = a/(1+b/E_{\nu})$$

 fitted simultaneously with the PDFs, etc. using the constraint from the emulsion data

sa, Blümlein, Caminadac, Lipka, Lohwasser, Moch, Petti, Placakyte hep-ph/1404.6469

CHORUS charm data

CHORUS data pull strangeness up, however the statistical significance of the effect is poor

sa, Blümlein, Caminadac, Lipka, Lohwasser, Moch, Petti, Placakyte hep-ph/1404.6469

Emulsion data on charm/CC ratio with the charmed hadron vertex measured

CHORUS NJP 13, 093002 (2011)

- full phase space measurements
- no sensitivity to B_{μ}
- low statistics (2013 events)

E15

CMS W+charm data

- CMS data go above the NuTeV/CCFR by 1σ ; little impact on the strange sea
- The charge asymmetry is in a good agreement with the charge-symmetric strange sea
- Good agreement with the CHORUS data

ATLAS W+charm data

Single-top: s.c.m. energy dependence

Single-top: mass dependence

Sea quark iso-spin asymmetry

- At $x\sim0.1$ the sea quark iso-spin asymmetry is controlled by the fixed-target DY data (E-866), weak constraint from the DIS (NMC)
- At x<0.01 Regge-like constraint like $x^{(a-1)}$, with a close to the meson trajectory intercept; the "unbiased" NNPDF fit follows the same trend