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Accelerators at CERN
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All is needed to achieve ...
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High-Energy Collisions (1)
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High-Energy Collisions (2)
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Detectors
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Types of Detectors (1)

Classified by
• Type

◦ Tracking
◦ Calorimetry (uniform, sampling)

• Technology
◦ Gaseous
◦ Crystal
◦ Semiconductor
◦ Metallic
◦ Scintillating/optical fibers
◦ Exotic
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Types of Detectors (2)

Classified by
• Physical objects/fragments

◦ Electromagnetic
◦ Hadronic
◦ Muonic
◦ Charge tracker

• Location
◦ Inner
◦ Outer
◦ Barrel
◦ Endcap

All the combinations are possible
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Complex Detectors (”Experiments”)

Classified by
• Physics goal

◦ General purpose
◦ Heavy ions
◦ Precision studies
◦ Specialized

Depending on the context:
parts are named: subdetectors, systems, subsystems.

Complex detectors try to catch everything.
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Recorded Collision

Aurelijus Rinkevicius (Cornell University) CMS Detector 2016-12-13 11 / 26



Introduction Detectors Anatomy Conclusions

Compact Muon Solenoid (CMS)

Sliced CMS detector 20–40 MHz

×

∼30 p–p
collisions

×

p–p = ∼400
fragments

=

∼50 Tb/s
Final

Resolution
particle

γ 1.5–5% @ 60 GeV
e 2–4% @ 10 GeV
µ 1–1.5% @ 10 GeV
j o(10)%
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Particle Identification
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The CMS Anatomy

(its Subdetectors)
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Simplified Data Acquisition (DAQ)
Module

Active material
Passing particles leave traces

On-module electronics
Servicing/control on-module electronics

Service electronics
Off-module electronics for basic services, data transfer, etc.

System control
Module/signal control, online data processing
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CMS Magnet

Highlights:
• Superconducting solenoid, B = 4 T
• Current: 20 kA
• Superconductor: NbTi (∼4 K)
• Dimensions: 13 × 4 m — tracker and calorimeters inside
• Cost ∼80 MCHF
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Semiconductor Tracker
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Highlights:
• Silicon sensors (strips, pixels).
• Sensitive to charged particles:

e±, µ±,...
• Momentum measurement.
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• Built for identification of collision points.
• Resolution ∼1%.
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The Ongoing Phase-1 Pixel Upgrade
Main goals of upgrade:
• Keep performance levels of current detector at higher

◦ Instantaneous luminosity (up to 2 · 1034 cm−2s−1);
◦ Pileup (up to 50 p–p interactions, hopefully not 100).

• Reduce detector mass.
• Survive radiation damage through 500 fb−1.

=0 =1.0=0.5 =1.5
=2.0

=2.5

=2.5

=2.0
=1.5=1.0=0.5=0

50.0 cm

Upgrade

Current

Outer rings

Inner rings

Install during extended
year-end technical stop:

Now!
3→ 4 barrel layers
2→ 3 forward disks
66→ 124 M pixels
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Phase-1 Pixel-Tracker DAQ Scheme
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Electromagnetic Calorimeter (ECAL)

y

z

Preshower (ES)

Barrel ECAL (EB)

Endcap

 = 1.653

 = 1.479

 = 2.6
 = 3.0

ECAL (EE)

Highlights:
• Lead tugstate crystals (PbWO4).
• Measures energy: e±, γ

(radiation length: 25X0).
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Hadron Calorimeter (HCAL)
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Highlights:
• Brass absorber w/ plastic

scintillating layers.
• Measures (hadron) energy:

p+, n0, π±, K mesons.
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Muon Detector
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Highlights:
• Gaseous detectors.
• Important for µ identification.
• Used in L1 filter.

cathode plane with strips

wire plane (a few wires shown)

7 trapezoidal panels form 6 gas gaps

4. Endcap Chambers

143

The detector technology chosen for the Endcap Muon System is the Cathode Strip
Chamber (CSC), a multiwire proportional chamber in which one cathode plane is segmented
into strips running across wires. An avalanche developed on a wire induces on the cathode
plane a distributed charge of a well known shape which is defined by electrostatics [4.1]:
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Charpak et al. [4.3] showed that by interpolating fractions of charge picked up by these
strips, one can reconstruct the track position along a wire with a precision of 50 µm or better
(for normal track incidence, the precision is almost entirely determined by the ratio of signal to
electronic noise). The principle of operation is shown schematically in Fig. 4.1.4.

muon
cathode

cathode

wires

wires

induced charge

cathode with strips

plane cathode

avalanche

3.12 mm

9.
5 

m
m

3 - 16 mm

F i g .  4 . 1 . 4 : Principle of coordinate measurement with a cathode strip chamber: cross-
section across wires (top) and across cathode strips (bottom). Close wire spacing allows for
fast chamber response, while a track coordinate along the wires can be measured by
interpolating strip charges.

The major advantages of CSCs are:
• their intrinsic spatial resolution, being basically defined by signal-to-noise ratio, can

be as good as 50 µm,
• closely spaced wires make the CSC a fast detector,

Aurelijus Rinkevicius (Cornell University) CMS Detector 2016-12-13 22 / 26



Introduction Detectors Anatomy Conclusions

Trigger (Filter)
One collision ∼ O(1) Mb of data.
• Collisions at 40 MHz.
• Level 1 (L1) trigger (online): 100 kHz.

Subsystems: CSCs+DTs, ECAL, HCAL.
• High level filter (HLT) is more sophisticated (offline): 300

Hz.
All subsystems are used. Approx. ”full” reconstruction.

Now and then:
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Trigger Schematics
16 Million channels

100 kHz
LEVEL-1 TRIGGER

1 Megabyte EVENT DATA

200 Gigabyte BUFFERS
500 Readout memories

3 Gigacell buffers

500 Gigabit/s

Gigabit/s SERVICE LAN Petabyte  ARCHIVE

Energy Tracks

Networks

1 Terabit/s
(50000 DATA CHANNELS)

5 TeraIPS

EVENT BUILDER.A large switching
network (512+512 ports) with a total throughput of
approximately 500 Gbit/s forms the interconnection
between the sources (Readout Dual Port Memory)
and the destinations (switch to Farm Interface). The
Event Manager collects the status and request of
event filters and distributes event building commands
(read/clear) to RDPMs

EVENT FILTER. It consists of a set of high
performance commercial processors organized into many
farms convenient for on-line and of-line applications.
The farm architecture is such that a single CPU
processes one event

40 MHz
COLLISION RATE

Charge Time Pattern

Detectors

Computing services

HLT (High Level Trigger)   designed for 
about  100Hz 

- Reduction factor 1000

~2000 CPUs

DAQ  accepts
Level-1 rate of 100kHz

All 25 ns

Aurelijus Rinkevicius (Cornell University) CMS Detector 2016-12-13 24 / 26



Introduction Detectors Anatomy Conclusions

Conclusions
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Conclusions

• Detectors are very complex systems.
• Capabilities depend on goals and available technologies.
• Data acquisition and analysis are multistep processes.
• All the possible help is needed.
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Thank you for your attention!
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BACKUP
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Detector Interactions
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Possible Elementary Interactions

• Scattering

• Annihilation

• Particle (pair) production
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Macrointeractions (1)

Photons:
• Compton scattering
• Photoelectric effect
• Pair production

Charged particles:
• Scattering — highly undesired
• Ionization (kicks off an electron off an atom)
• Excitation (excites electrons to higher energy orbitals)
• Photon radation:

◦ Bremsstrahlung (accelerated movement of a charge)
◦ Transition radiation
◦ Cherenkov radiation (excees the speed of light in mat.)
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Macrointeractions (2)

Hadronic interactions:
• Strong interactions due to inelastic scattering with nuclei:

charged fragments are detected.

Neutrinos:
• Do no interact.
• Missing transverse energy/momentum.
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How to build a detector?

One needs to know:
• Physics goal
• Physical objects/fragments
• Technology
• DAQ specifics
• Load
• Experimental conditions
• Goals of your colleagues
• Budget
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Magnet — The Special Component
A Toroidal LHC Apparatus (ATLAS) Compact Muon Solenoid (CMS)

µ

µ
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General Purpose Detectors
ATLAS CMS
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Specialized Detectors

ALICE LHCb

• Heavy-ion research • High resolution
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Miscellaneous Comments
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DIY
• LHC ”equipment” is (almost) all DIY:

◦ Hardware, firmware, software.

• Many systems are prototypes (calibrations are needed).
• It is hard to take into account (predict) everything.
• Experimental conditions (data taking) is a running target:

8, 13 TeV, ...
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From Physics to Raw Data

• Really recorded raw data for ATLAS/CMS ~400 MB/s
– mainly electronics numbers

• e.g. number of detector element where ADC  (Analog-to-Digital converter) saw signal with 
x counts...

Aurelijus Rinkevicius (Cornell University) CMS Detector 2016-12-13 26 / 26



Introduction Detectors Anatomy Conclusions

From Physics to Raw Data

• We need to go from raw data back to physics
– reconstruction + analysis of the event(s)
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