

Introduction to the CMS Detector

Aurelijus Rinkevicius

Cornell University

2016-12-13

Aurelijus Rinkevicius (Cornell University)

CMS Detector

э 2016-12-13 1/26

イロト イヨト イヨト イヨト

Detectors

Anatomy

Conclusions

Introduction

Detectors

Anatomy

Conclusions

Aurelijus Rinkevicius (Cornell University)

CMS Detector

■ ▲ 王 ▶ 王 ∽ ۹.0° 2016-12-13 2/26

イロト イロト イヨト イヨト

Anatomy

Introduction

Aurelijus Rinkevicius (Cornell University)

CMS Detector

2 3/26 2016-12-13

イロト イロト イヨト イヨト

Anatomy

Accelerators at CERN

イロト イヨト イヨト イヨト

All is needed to achieve ...

Aurelijus Rinkevicius (Cornell University)

CMS Detector

э 2016-12-13 4/26

Anatomy

High-Energy Collisions (1)

Aurelijus Rinkevicius (Cornell University)

CMS Detector

э 2016-12-13

ヘロト 人間 トイヨト イヨト

Anatomy

Detectors

Aurelijus Rinkevicius (Cornell University)

CMS Detector

2 7/26 2016-12-13

◆□> ◆圖> ◆注> ◆注>

Detectors

Anatomy

Conclusions

Classified by

- Type
 - Tracking
 - Calorimetry (uniform, sampling)
- Technology
 - Gaseous
 - Crystal
 - Semiconductor
 - Metallic
 - Scintillating/optical fibers
 - Exotic

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Detectors

Anatomy

Conclusions

Classified by

- Physical objects/fragments
 - Electromagnetic
 - Hadronic
 - Muonic
 - Charge tracker
- Location
 - Inner
 - Outer
 - Barrel
 - Endcap

All the combinations are possible

Aurelijus Rinkevicius (Cornell University)

CMS Detector

2016-12-13 9/26

(a)

Conclusions

Classified by

- Physics goal
 - General purpose
 - Heavy ions
 - Precision studies
 - Specialized

Depending on the context:

parts are named: subdetectors, systems, subsystems.

Complex detectors try to catch everything.

< ロ > < 同 > < 回 > < 回 >

Detectors

Anatomy

Conclusions

Recorded Collision

Aurelijus Rinkevicius (Cornell University)

CMS Detector

2016-12-13 11 / 26

Anatomy

Conclusions

20-40 MHz

Compact Muon Solenoid (CMS)

Sliced CMS detector

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Anatomy

Particle Identification

Aurelijus Rinkevicius (Cornell University)

CMS Detector

э 2016-12-13 13/26

イロト イロト イヨト イヨト

The CMS Anatomy (its Subdetectors)

Aurelijus Rinkevicius (Cornell University)

CMS Detector

э 2016-12-13

イロト イロト イヨト イヨト

Aurelijus Rinkevicius (Cornell University)

CMS Detector

2016-12-13 15/26

Aurelijus Rinkevicius (Cornell University)

CMS Detector

2016-12-13 15/26

Detectors

Anatomy

Conclusions

CMS Magnet

Highlights:

- Superconducting solenoid, *B* = 4 T
- Current: 20 kA
- Superconductor: NbTi (~4 K)
- Dimensions: 13×4 m tracker and calorimeters inside
- Cost ~80 MCHF

A D F A B F A B F A B F

Anatomy

Semiconductor Tracker

-- 21 - 23

Highlights:

- Silicon sensors (strips, pixels).
- Sensitive to charged particles: $e^{\pm}, \mu^{\pm}, \dots$
- Momentum measurement.

• Built for identification of collision points.

Image: A matrix

• Resolution ~1%.

The Ongoing Phase-1 Pixel Upgrade

Main goals of upgrade:

- Keep performance levels of current detector at higher
 - $\circ~$ Instantaneous luminosity (up to $2\cdot 10^{34}~cm^{-2}s^{-1});$
 - Pileup (up to 50 p-p interactions, hopefully not 100).
- Reduce detector mass.
- Survive radiation damage through 500 ${\rm fb^{-1}}.$

Aurelijus Rinkevicius (Cornell University)

CMS Detector

2016-12-13 19 / 26

Anatomy

Electromagnetic Calorimeter (ECAL)

Highlights:

- Lead tugstate crystals (PbWO₄).
- Measures energy: e[±], γ (radiation length: 25X₀).

Aurelijus Rinkevicius (Cornell University)

CMS Detector

2016-12-13 20

Anatomy

Conclusions

Hadron Calorimeter (HCAL)

CMS Detector

Aurelijus Rinkevicius (Cornell University)

Highlights:

- Brass absorber w/ plastic scintillating layers.
- Measures (hadron) energy: p^+ , n^0 , π^{\pm} , K mesons.

Sampling Calorimeter

R.S. Orr 2009 TRIUMF Summer Institute

2016-12-13 21/26

Detectors

Anatomy

Conclusions

Muon Detector

Highlights:

- Gaseous detectors.
- Important for μ identification.
- Used in L1 filter.

vande skale val de skale val

7 trapezoidal panels form 6 gas gaps

Aurelijus Rinkevicius (Cornell University)

cathode

cathode

cathode with strips

wires

Trigger (Filter)

One collision $\sim O(1)$ Mb of data.

- Collisions at 40 MHz.
- Level 1 (L1) trigger (online): 100 kHz.
 Subsystems: CSCs+DTs, ECAL, HCAL.
- High level filter (HLT) is more sophisticated (offline): 300 Hz.

All subsystems are used. Approx. "full" reconstruction.

Now and then:

CMS Detector

Anatomy

Conclusions

Conclusions

Conclusions

Aurelijus Rinkevicius (Cornell University)

CMS Detector

2 2016-12-13

イロト イロト イヨト イヨト

Conclusions

- Detectors are very complex systems.
- Capabilities depend on goals and available technologies.
- Data acquisition and analysis are multistep processes. •
- All the possible help is needed.

Aurelijus Rinkevicius (Cornell University)

CMS Detector

2016-12-13 26/26

(a)

Conclusions

Thank you for your attention!

Aurelijus Rinkevicius (Cornell University)

CMS Detector

э 2016-12-13

イロト イロト イヨト イヨト

Conclusions

BACKUP

Aurelijus Rinkevicius (Cornell University)

CMS Detector

2 26/26 2016-12-13

イロト イロト イヨト イヨト

Conclusions

Detector Interactions

Aurelijus Rinkevicius (Cornell University)

CMS Detector

2 2016-12-13

イロト イロト イヨト イヨト

Anatomy

Conclusions

Conclusions

Macrointeractions (1)

Photons:

- Compton scattering
- Photoelectric effect
- Pair production

Charged particles:

- Scattering highly undesired
- Ionization (kicks off an electron off an atom)
- Excitation (excites electrons to higher energy orbitals)
- Photon radation:
 - Bremsstrahlung (accelerated movement of a charge)
 - Transition radiation
 - Cherenkov radiation (excees the speed of light in mat.)

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Detectors

Anatomy

Conclusions

Hadronic interactions:

• Strong interactions due to inelastic scattering with nuclei: charged fragments are detected.

Neutrinos:

- Do no interact.
- Missing transverse energy/momentum.

Detectors

Anatomy

Conclusions

How to build a detector?

One needs to know:

- Physics goal
- Physical objects/fragments
- Technology
- DAQ specifics
- Load
- Experimental conditions
- Goals of your colleagues
- Budget

(a)

Conclusions

Magnet — The Special Component

A Toroidal LHC Apparatus (ATLAS) Compact Muon Solenoid (CMS)

Aurelijus Rinkevicius (Cornell University)

CMS Detector

2016-12-13 26 / 26

Conclusions

General Purpose Detectors

Aurelijus Rinkevicius (Cornell University)

< ロ > < 回 > < 回 > < 回 > < 回 >

CMS

CMS Detector

2016-12-13

Detectors

Anatomy

Conclusions

Specialized Detectors

ALICE

Heavy-ion research

イロト イヨト イヨト イヨト

• High resolution

Aurelijus Rinkevicius (Cornell University)

CMS Detector

2016-12-13 26 / 26

Conclusions

Miscellaneous Comments

Aurelijus Rinkevicius (Cornell University)

CMS Detector

э 2016-12-13

イロト イロト イヨト イヨト

Detectors

Anatomy

Conclusions

DIY

- LHC "equipment" is (almost) all DIY:
 - Hardware, firmware, software.
- Many systems are prototypes (calibrations are needed).
- It is hard to take into account (predict) everything.
- Experimental conditions (data taking) is a running target: 8, 13 TeV, ...

Aurelijus Rinkevicius (Cornell University)

CMS Detector

2016-12-13 26 / 26

Conclusions

From Physics to Raw Data

Justice Ho				2037 2446 1733 1699 4003 3611 952 1328 2132 1870 2093 3271 4732 1102 2491 3216 2421 1211 2319 2133 3451 1942 1121 3429 3742 1288 2343 7142
Basic physics	Fragmentation, Decay	Interaction with detector material Multiple scattering, interactions	Detector response Noise, pile-up, cross-talk, inefficiency, ambiguity, resolution, response function, alignment	Raw data Read-out addresses, ADC, TDC values, Bit patterns

- Really recorded raw data for ATLAS/CMS ~400 MB/s ٠
 - mainly electronics numbers
 - e.g. number of detector element where ADC (Analog-to-Digital converter) saw signal with x counts...

Aurelijus Rinkevicius (Cornell University)

CMS Detector

2016-12-13

イロト イポト イヨト イヨト

Conclusions

From Physics to Raw Data

- We need to go from raw data back to physics
 - reconstruction + analysis of the event(s)

Aurelijus Rinkevicius (Cornell University)

CMS Detector

2016-12-13 26/26

(a)