
ENGINEERING CMS SOFTWARE For High-Efficiency / Many Core Architectures

DAVID ABDURACHMANOV (UNIVERSITY OF NEBRASKA-LINCOLN), 13 DEC 2016

MOTIVATION THE ELECTRICITY COSTS

June 2016

- Gartner reported in 2010 that energy-related costs are the fastest-rising cost in the data center
- New report in 2016 June: Annual growth for server shipments have fallen significantly, same applies for power consumption, yet we continue to have "a drastic increase in demand for data center services"

MANY/MULTI CORE RISE

- The power dissipation (watts) have stopped increasing in the last decade and the same applies to the frequencies.
- Thus CPUs instead started adding weaker cores, but higher number of them.
- Also recent CPUs are very dynamic, e.g., AVX frequencies in Haswell Xeon.

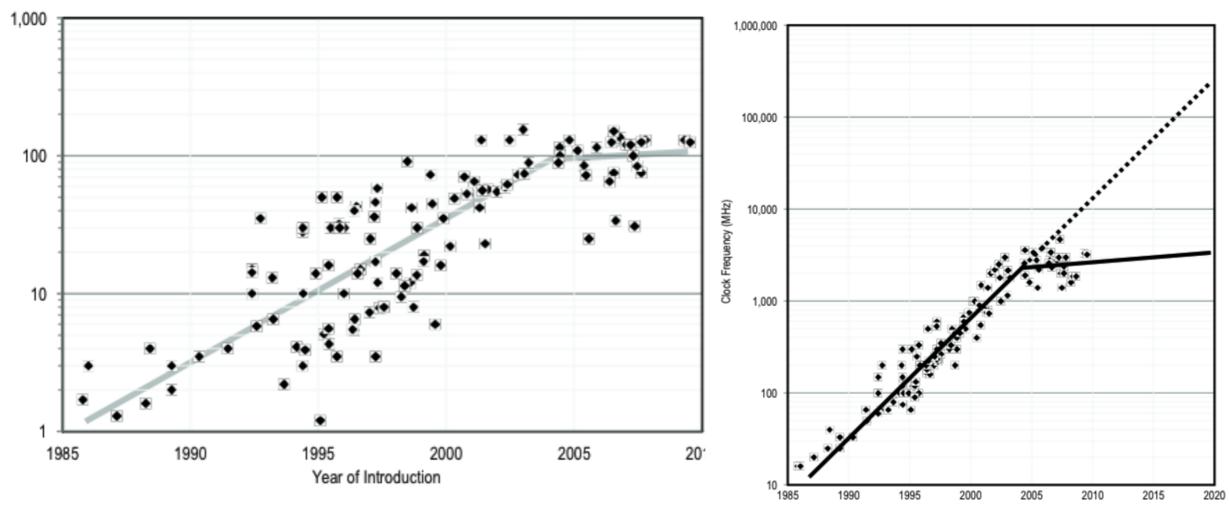


FIGURE A.4 Microprocessor power dissipation (watts) over time (1985-2010).

Year of Introduction

THE NEW ERA THE CHANGE

- ARM announced ARMv8.{0,1,2,3} which now covers server market.
 - Designs with up to 64 cores announced & to be used in supercomputers.
- ARM recently announced Scalable Vector Extension (SVE) for HPC.
 - Up to 2K vector sizes & binary compatibility.
- ARM provides IP (building blocks for SOC and ISA) licenses, but not the product.
- Number of server grade SOCs announced from APM (early CMS partner), Cavium, AMD, Broadcom, Qualcomm, Huawei, Phytium Technology Co., etc. based on — ARM's and custom IP.
- All powered by a single ISA, but completely different.
- IBM announced OpenPOWER Foundation other companies now can build PowerPC CPUs.
- POWER8+ with NVLink 1.0 is the first one after OpenPOWER Foundation was launched.
- Intel recently released KNL (many-core and vector CPU) with legacy support for x86_64.
 - Also recently announced KNM with improvements for machine learning.

4

- Xeon + FPGA (former Altera) products from Intel
- Lake Crest deep learning accelerator silicon

Open**POWER**

COMMODITY STILL COMMON STUFF

ARM[°]

intel)

- Both offer LP64 data model and LE support, RHEL/CentOS/Fedora, almost no porting efforts.
- SopenPOWER > Both have announced NVIDIA GPGPU (CUDA) support.
 - The idea is to be extremely boring, i.e. administrators and users shouldn't notice that they are running on different architecture → it's yet another PC.


THE TOOL THE BENCHMARKING

- Benchmarking is an activity/a tool to measure technology and software progress over time.
- We are moving away from homogeneous to heterogeneous computing:
 - Rapid development of ARM server SOCs and platforms from multiple vendors, e.g. X-Gene 1 (8-core) → X-Gene 3 (32-core) → X-Gene 3XL (64-core) while also increasing single-threaded performance (estimated).
 - IBM is moving forward with OpenPOWER Foundation and POWER9.
 - IBM POWER8 already is competitive to Xeon in terms of performance.
 - CPUs with SMT 2 (Xeon), SMT 4 (Xeon Phi, Broadcom Vulcan), SMT 8 (PowerPC).
 - Long-vector (e.g. AVX512) machines (Xeon Phi, ARMv8 SVE)
 - GPGPU power and efficiency is rising fast and supports all major architectures: Intel, ARM and IBM.
 - Code modernisation projects in HEP focusing on Xeon Phi, GPGPU acceleration (CUDA, OpenCL) and vectorisation
- Our code base has to be **flexible to adapt** to the future technologies.

WHY NEW ARCHITECTURES?

- Distributed computing in HEP before ~2000 had multiple vendors involved, and incl. special workstations and heterogeneous computing
- Hight Throughput Computing (HTC) converged on x86/Linux at ~2000
 - Commodity hardware enabled the current model of WLCG:

Build Once, Run Everywhere

• Two vendors: Intel (dominating) and AMD

Homogeneous scale-up

Heterogeneous scale-up

and

Scale-out

- The on-chip power density limitations are driving the computing market towards a greater variety of solutions, i.e. workflow optimised
- Specialised processors and heterogeneous computing rise up
- Incl. heterogeneous worker nodes

CMS SOFTWARE BUDNLE

CMSSW is **open-source** and available at GitHub

Mostly written in **C++14**, C, **Python** and **Fortran**

CMFS CMSSW is like **Software Collection** package or **Linux Container** without actually being any of them

Quick comparison:

The actual application software for	
"pattern recognition", "simulation", et	IC.

	CMS Software Bundle						
	CMSSW						
	HEP						
	ROOT FFTW EIGEN HepMC SciPy						
	Standard						
	PythonzlibglibcOpenSSLToolchain						
	GCC Binu	itils GDB	elfutils	LLVM/Clang			
	(OS (RHEL/CentOS/SL)					
	Firefox	_ Otha	r CERNI c	loveloned			
	Other CERN developed7Msoftware would increase						

SLOCs

ROOT6 w/o Clang: 1.7M

GEANT4: 1.1M

	CMSSW	Firefox
SLOCs	6M	7M
Initial Release	2005	2002
Contributors	>1300	>1200
Memory Footprint	~2GB	8 ~0.3GB

ł

PRODUCTS THE SPLIT

GENERAL PURPOSE (64-BIT)

Xeon Phi/MIC PowerPC ARMv8

RISC-V

- If architecture provides LP64 data model and LE mode it's mostly recompilation that is required to run (does not mean optimal performance).
- Supports "legacy" applications without maintainers as long as no assembly or/ and compiler intrinsics.
- Known toolchain (GCC/Clang/binutils) with same C and C++ support.

ACCELERATOR

Xeon Phi/MIC GPGPU FPGA DSP

- Requires increased effort for new data formats, algorithms and data management to run and achieve optimal performance on given hardware.
- Might need to learn CUDA, OpenCL,
 OpenMP, OpenACC or any other
 wrapper library to "talk" to accelerator.
- Might require learning different language to exploit accelerator.

SERVERS THE DENSITY

COMMON

2U chassis with 4 nodes, each is 1U half-width with 2 sockets, e.g. Intel Xeon

Powerful accelerators (GPGPU, FPGA)

HIGH DENSITY

4.3U HP Moonshot with 45 microservers/blades with Intel Atom or APM X-Gene.

> 3U SuperMicro MicroCloud SuperServer with 24 nodes with Intel Xeon or Atom

SUPER HIGH DENSITY

2U 128 node, hot water cooled, NXP PowerPC (BE) and ARMv8, SKA DOME micro-server

10

Some accelerators (DSP, GPGPU, FPGA)

PowerPC BE version 1536 cores, 3072 threads and 6TB of RAM, ~6kW

SUMMARY

- CMS together with other LHC experiments works on the current and future computing chips from different vendors via CERN Openlab
- We are also involved with open source communities and other industry partners
- Application diversity could drive heterogeneity to aid in {performance, power, cost} optimizations
- Power constraints and market evolution may drive change in the kinds of processors we use
- The race is heating up, and Intel/platform vendors are not sitting idle
- We are constantly working on porting/rewriting/redesigning specific parts from software stack to use new software frameworks and future hardware
- We want to increase throughput density, lower power usage for computing and cooling, etc.
- Contact: davidIt <at> cern <dot> ch