Introduction	au au pair correlation	Results	Conclusion
	00	00000	

Identifying Z and H bosons in di-tau decays

Simonas Draukšas

Vilnius University

2016-12-13

Introduction	au au pair correlation 00	Results 00000	Conclusion
Introduction			

- Z and H bosons
- $Z/H \rightarrow \tau \tau$ decay channel
- Visible and total energy ratio $x = \frac{E_{vis}}{E_{tot}}$

Results

Conclusion

τ helicity effect on the decay

Figure 1: Distribution of fraction of visible energy, x, in pion (a) and rho (b) decays divided into left-handed (pink) and right-handed (blue) samples. [*]

^[*] Ingrid Deigaard. "Measurement of the Tau Polarization in Z $\rightarrow \tau \tau$ Decays with the ATLAS Detector". 2012, pp. 21–27, p. 1.

au au pair correlation by Z and H bosons

- Z-vector boson → opposite τ helicities [*]
- *H*-scalar boson \rightarrow same τ helicities [*]
- ττ pair helicities are correlated by the mother particle

Figure 2: Helicities in *Z* and *H* two-body decays

^[*] K. Hagiwara BK. Bullock and AD. Martin. "Tau pair polarisation correlations as a signal for Higgs bosons". In: *Phys. Lett B* (1991), 273:501

Results

Conclusion

Results in $\pi^- \nu_{ au} imes \pi^+ \bar{ u}_{ au}$

Figure 3: Energy fraction distributions when both tauons decay into single pions

au au pair correlation

Results 0●000 Conclusion

Results in $\pi^- \nu_{ au} imes \pi^+ ar{ u}_{ au}$ with a weight function

$$w_R = \sqrt{(x - 0.5)^2 + (y - 0.5)^2}$$
 (2)

Figure 4: Energy fraction distributions weighted with the w_R function when both tauons decay into single pions

$\tau \tau$ pair correlation

Results in $\pi^- \nu_{ au} imes \pi^+ ar{ u}_{ au}$ with a weight function

$$w_R^2 = (x - 0.5)^2 + (y - 0.5)^2$$
 (3)

Figure 5: Energy fraction distributions weighted with the w_R^2 function when both tauons decay into single pions

au au pair correlation

Results

Conclusion

Results in $\pi^-\pi^0\nu_ au imes \pi^+\pi^0\bar{\nu}_ au$

Figure 6: Energy fraction distributions when both tauons decay into two pions

Figure 7: Energy fraction distributions weighted with the w_R (2) function when both tauons decay into two pions

Introduction	au au pair correlation 00	Results 00000	Conclusion
Conclusion			

- Z and H bosons can be identified in $\tau\tau$ decays
- $\pi^- \nu_\tau \times \pi^+ \bar{\nu}_\tau$ is the most sensitive channel
- Differences can be enhanced with weight functions