Raffaele Tito D'Agnolo EuCARD-2 XBEAM Strategy Workshop 13/12/2017

STORAGE RINGS AS GRAVITATIONAL WAVE ANTENNAS

A WONDERFUL OBSERVATION

LIGO

- BIG (few km)
- VERY PRECISE (Position of mirrors, ...)

LHC

- BIG (few km)
- VERY PRECISE (Position of protons)

LIGO vs LHC

LASERS ARE COHERENT

$$\Delta \phi = \frac{\Delta l}{\lambda} \approx 10^6 \Delta l(m)$$

BUT TeV PROTON BUNCHES ARE NOT

WE WILL EXPLOIT RESONANT EFFECTS

SOURCES AND DETECTORS

THE LAY OF THE LAND

WITHOUT RESONANCES THERE IS NO HOPE

THE LAY OF THE LAND

DISCLAIMER: TODAY ONLY VERY RUDIMENTARY TOY MODELS

THE HARMONIC OSCILLATOR(S)

THE HARMONIC OSCILLATOR(S)

 $\ddot{\delta}_{\rho} + \omega_{\rho}^2 \delta_{\rho} = 0$

 $\omega_{\rho} \approx \omega_0 \approx 10 \text{ kHz}$

Only dipoles for simplicity

THE WAVE

$$\begin{split} \delta_{\rho} & \ddot{\delta}_{l} + \omega_{l}^{2} \delta_{l} = \omega_{g}^{2} L f(\omega_{g} t) \\ \ddot{\delta}_{\rho} + \omega_{\rho}^{2} \delta_{\rho} = \omega_{g}^{2} \rho h(\omega_{g}, \omega_{0}, t) \\ \delta_{l} \end{split}$$

GRAVITATIONAL WAVE BASICS

$$ds^2 = -dt^2 + (\delta_{ij} + h_{ij}^{TT})dx^i dx^j$$

 $h_{ij}^{TT} = hH_{ij}\cos\left(\omega_g t - \omega_g \vec{n} \cdot \vec{x}\right)$ Tiny dimensionless number Two polarizations (i.e. sparse matrix with O(1) nonzero elements)

I HAVE CHOSEN A GAUGE, BUT THIS IS STILL A VERY REDUNDANT DESCRIPTION

GRAVITATIONAL WAVE BASICS

$$ds^2 = -dt^2 + (\delta_{ij} + h_{ij}^{TT})dx^i dx^j$$

 $V \sim \frac{1}{r} \quad \begin{array}{l} \text{As EM} \\ \text{field} \end{array}$

$$n^i h_{ij}^{TT} = 0$$

$$h_{ii}^{TT} = 0$$

Transverse

No effect in the direction of propagation

Traceless Two dofs

DIRECTION OF PROPAGATION

y

 ${\mathcal X}$

Familiar from focusing-defocusing quadrupoles

$$\Delta L = \mathcal{O}(h^2)$$

 $\Delta R \sim h R$

DIRECTION OF PROPAGATION

 $\Delta L \sim hL$

$\Delta R \sim hR\sin\theta$

LONGITUDINAL MOTION

$$\begin{split} \delta_{\rho} & \ddot{\delta}_{l} + \omega_{l}^{2} \delta_{l} = \begin{matrix} \omega_{g}^{2} L f(\omega_{g} t) \\ \ddot{\delta}_{\rho} + \omega_{\rho}^{2} \delta_{\rho} = \omega_{g}^{2} \rho h(\omega_{g}, \omega_{0}, t) \\ \delta_{l} \end{split}$$

THE QUANTITY THAT WE MEASURE

$$\ddot{\delta}_t + \omega_l^2 \delta_t = \omega_g^2 T f(\omega_g t)$$

NOBODY LIKES TEDIOUS GR COMPUTATIONS

$$\ddot{\delta}_t + \omega_l^2 \delta_t = \omega_g^2 T f(\omega_g t) \longrightarrow \hat{x}$$

1)
$$f(\omega_g t) \sim h$$

2) $f(\omega_g t) = f(\omega_g (t+T)) + \mathcal{O}\left(\frac{\omega_g}{\omega_0} \approx 10^{-3}\right)$ $T = \frac{2\pi}{\omega_g}$

SO
$$f(\omega_g t) = ch\cos(\omega_g t + \phi)$$
 $c = \mathcal{O}(1)$

FORCED HARMONIC OSCILLATOR

$$\ddot{\delta}_t + \omega_l^2 \delta_t = \omega_g^2 chT \cos\left(\omega_g t + \phi\right)$$

 $\omega_g = \omega_l$

FORCED HARMONIC OSCILLATOR

ASSUMPTION: WE CAN SUBTRACT THE CONSTANT COMPONENT PAYING AN O(1) PRICE IN SENSITIVITY $(\Delta T/T)_{\rm exp} \approx 10^{-7}$

SENSITIVITY

$$h \gtrsim 10^{-11} \left(\frac{1 \text{ h}}{\tau}\right) \left(\frac{10 \text{ Hz}}{\omega_g}\right)$$

- AT LEAST 10 ORDERS OF MAGNITUDE ABOVE KNOWN SOURCES
- BUT THERE IS A CLEAR WAY FORWARD
 - (MUCH) SLOWER PROTONS $|\Delta T|_{\max}^{h} \sim (hT)(\omega_{g}\tau)$
 - IMPROVE TIME RESOLUTION
 - IMPROVE BEAM STABILITY
 - THE BEAM INTENSITY CAN BE CONSIDERABLY REDUCED
 - THE LOWER THE ENERGY THE BETTER
 - A SMALLER RING WITH SLOWER PROTONS CAN HAVE THE SAME SENSITIVITY

$$\begin{split} \delta_{\rho} \\ \delta_{\rho} \\ \delta_{\rho} + \omega_{l}^{2} \delta_{l} &= \omega_{g}^{2} L f(\omega_{g} t) \\ \ddot{\delta}_{\rho} + \omega_{\rho}^{2} \delta_{\rho} &= \omega_{g}^{2} \rho h(\omega_{g}, \omega_{0}, t) \\ \delta_{l} \end{split}$$

$$\begin{split} \delta_{\rho} & \ddot{\delta}_{l} + \omega_{l}^{2} \delta_{l} = \omega_{g}^{2} L f(\omega_{g} t) \\ \ddot{\delta}_{\rho} + \omega_{\rho}^{2} \delta_{\rho} = \begin{matrix} \omega_{g}^{2} \rho h(\omega_{g}, \omega_{0}, t) \\ \delta_{l} & \text{No shortcut} \\ \omega_{0} \sim \omega_{\rho} \sim \omega_{g} \end{matrix}$$

$$\ddot{\delta}_{\rho} + \omega_{\rho}^2 \delta_{\rho} = -\frac{\omega_g^2}{2} h\rho \left[e_+ \cos(2\omega_0 t) + e_X \sin(2\omega_0 t) \right] \cos(\omega_g t + \phi)$$

Separation between protons and magnets

 $\ll R$

$$\ddot{\delta}_{\rho} + \omega_{\rho}^2 \delta_{\rho} = -\frac{\omega_g^2}{2} h\rho \left[e_+ \cos(2\omega_0 t) + e_X \sin(2\omega_0 t) \right] \cos(\omega_g t + \phi)$$

Rough approximation: ω_{ρ} = weighted average between dipoles and quadrupoles, in all the machine.

We sit on the resonance $\omega_g = |\omega_\rho \pm 2\omega_0|$ and assume that the homogenous solution can be subtracted.

$$\ddot{\delta}_{\rho} + \omega_{\rho}^2 \delta_{\rho} = -\frac{\omega_g^2}{2} h\rho \left[e_+ \cos(2\omega_0 t) + e_X \sin(2\omega_0 t) \right] \cos(\omega_g t + \phi)$$

Rough approximation: ω_{ρ} = weighted average between dipoles and quadrupoles, in all the machine.

We sit on the resonance $\omega_g = |\omega_\rho \pm 2\omega_0|$ and assume that the homogenous solution can be subtracted.

$$|\delta_{\rho}|_{\max}^{h} \approx \mu m \left(\frac{h}{10^{-12}}\right) \left(\frac{\rho}{2 \text{ cm}}\right) \left(\frac{\tau}{s}\right)$$

$$|\delta_{\rho}|_{\max}^{h} \approx \mu m \left(\frac{h}{10^{-12}}\right) \left(\frac{\rho}{2 \text{ cm}}\right) \left(\frac{\tau}{s}\right)$$

- THE APPROXIMATIONS ON THE BEHAVIOR OF THE MACHINE ARE NOT OBVIOUSLY JUSTIFIED
- THERE IS NOT A CLEAR WAY FORWARD THIS TIME
 - IMPROVE BY MORE THAN 10 ORDERS OF MAGNITUDE THE BEAM STABILITY?
 - NO KNOWN SOURCES IN THIS FREQUENCY RANGE
 - INCREASING THE RESONANCE FREQUENCY IS NOT REALLY AN OPTION

CONCLUSION

- MEASURING GRAVITATIONAL WAVES USING STORAGE
 RINGS MIGHT BE HOPELESS
- HOWEVER MEASURING GRAVITATIONAL WAVES WAS
 CONSIDERED ALTOGETHER HOPELESS FOR DECADES AND
 WE WERE WRONG
- THE OUT-OF-THE-BOX SENSITIVITY OF THE LHC TO SPATIAL DEFORMATION OF A PART IN TEN BILLIONS IS QUITE REMARKABLE
- THE PRESENCE OF A POTENTIAL PATH TOWARDS GW-LEVEL SENSITIVITY FOR LONGITUDINAL DEFORMATIONS IS EVEN MORE REMARKABLE AND MIGHT DESERVE FURTHER STUDY

BACKUP

TORSION-BAR ANTENNA

Masaki Ando, Koji Ishidoshiro, Kazuhiro Yamamoto, Kent Yagi, Wataru Kokuyama, Kimio Tsubono, and Akiteru Takamori, Phys. Rev. Lett. 105, 161101

ATOM INTERFEROMETRY

