State of the Art of Hadron Storage Rings, GSI FAIR Challenges, Limitations and Prospects

G. Franchetti, GSI

EuCARD-2 XBEAM Strategy Workshop, 13-17 February 2017, Colegio Mayor Rector Peset, Valencia, Spain

FAIR

Key Technical Features

•Cooled beams

•Rapidly cycling superconducting magnets

Primary Beams

- 5x10¹¹/s; 1.5-2 GeV/u; ²³⁸U²⁸⁺
- Factor 100-1000 over present in intensity
- 2x10¹³/s 30 GeV protons
- 10¹⁰/s ²³⁸U⁷³⁺ up to 35 GeV/u (up to 90 GeV protons)

Secondary Beams

- •Broad range of radioactive beams up to 1.5 - 2 GeV/u; up to factor 10 000 in intensity over present
- •Antiprotons 3 30 GeV

Storage and Cooler Rings

- Radioactive beams
- •e A collider
- •10¹¹ stored and cooled 0.8 14.5 GeV antiprotons

J-PARC & LIU

Param. @ LHC collision	Nominal ¹ 25 ns	Today * 50 ns	HL-LHC ¹ 25 ns	HL-LHC ¹ 50 ns
Int/bunch	1.15E11	~1.6E11	2.2E11	3.5E11
Bunches	2808	1374	2808	1404
Beam current [A]	0.58		1.12	0.89
ε _n [μm]	3.75	~ 2.4	2.5	3.0
<mark>β*[m]</mark>	0.55	0.6	0.15	0.15
Peak Lumi [cm ⁻² s ⁻¹]	1 10 ³⁴	7.74 10 ³³	9 10 ³⁴	9 10 ³⁴

Trends

4

SIS18

UNILAC/SIS18 Beam parameter

	UNILAC today	FAIR	2017
Reference primary ion	U ²⁸⁺ /U ⁷³⁺	U ²⁸⁺	U ⁷³⁺
Current (mA)	5/1	15	3
Emittance, 4σ (h, mm mrad)	7/7	5	7
Momentum spread (2σ)	1E-3/1E-3	5E-4	5E-4
	SIS-18 today	FAIR design	2017
Reference primary ion	SIS-18 today U ^{28+/U⁷³⁺}	FAIR design U ²⁸⁺	2017 U ⁷³⁺
Reference primary ion Reference energy GeV/u	SIS-18 today U ²⁸⁺ /U ⁷³⁺ 0.2/1	FAIR design U ²⁸⁺ 0.2	2017 U ⁷³⁺
Reference primary ion Reference energy GeV/u Ions per cycle	SIS-18 today U ²⁸⁺ /U ⁷³⁺ 0.2/1 4E10/4E9	FAIR design U ²⁸⁺ 0.2 1.5E11	2017 U ⁷³⁺ 1 2E10
Reference primary ion Reference energy GeV/u Ions per cycle	SIS-18 today U ²⁸⁺ /U ⁷³⁺ 0.2/1 4E10/4E9 0.5 Hz	FAIR design U ²⁸⁺ 0.2 1.5E11 2.7 Hz	2017 U ⁷³⁺ 1 2E10 2 Hz

Space charge limit in SIS18

Atomic Number

Isotopes

lon sources at GSI: Status

(O. Kester)

Element	Ion Beam	Ion Source	Duty Factor	Beam current in front of the RFQ	Particles in 100 µs pulse	Space-charge limit RFQ
CH ₄	$^{12}\mathrm{CH_3}^+ \rightarrow * \mathrm{p}$	MUCIS	2 Hz / 1 ms	$3 \text{ mA} \rightarrow * 3 \text{ mA}$	1.9·10 ¹²	3.8 mA
N ₂	$^{14}N_{2}^{+}$	CHORDIS	5 Hz / 1 ms	4 mA	2.5·10 ¹²	7 mA
Ar	⁴⁰ Ar ⁺	MUCIS	5 Hz / 1 ms	20 mA	1.2·10 ¹³	10 mA
C -	⁴⁰ Ca ²⁺	PIG	50 Hz / 5 ms	100 µA	3.1·10 ¹⁰	5 mA
Ca	⁴⁸ Ca ¹⁰⁺	ECR	DC	100 µA	6.3·10 ⁹	-
Ni	⁵⁸ Ni ²⁺	VARIS	1 Hz / 0.5 ms	5 mA	1.6·10 ¹²	7.3 mA
Kr	⁸⁶ Kr ²⁺	MUCIS	5 Hz / 1 ms	7 mA	2.2·10 ¹²	10.8 mA
Ag	¹⁰⁷ Ag ²⁺	VARIS	1 Hz / 1 ms	10 mA	3.1·10 ¹²	13.4 mA
Sn	¹¹² Sn ¹⁵⁺	ECR	DC	25 μΑ	10 ⁹	-
Xe	¹²⁴ Xe ³⁺	MUCIS	5 Hz / 1 ms	4 mA	8.3·10 ¹¹	10.3 mA
Au	¹⁹⁷ Au ⁴⁺	VARIS	0.5 Hz / 0.5 ms	4.5 mA	7·10 ¹¹	12.3 mA
Pb	²⁰⁸ Pb ⁴⁺	VARIS	0.5 Hz / 0.4 ms	5 mA	7.8·10 ¹¹	13 mA
Bi	²⁰⁹ Bi ⁴⁺	VARIS	0.5 Hz / 0.5 ms	12 mA	1.9·10 ¹²	13.1 mA
U	²³⁸ U ⁴⁺	VARIS	1 Hz / 0.5 ms	12 mA	1.9·10 ¹²	15 mA

Example for proton

E	[MeV]	70	11,4	11,4
I [mA]	(UNILAC)	35	1	2
SIS18 outpu	it (particles/cycle)	5,0E+12	3,4E+11	6,8E+11
Space charg	ge limit (N)	5,8E+12	8,6E+11	8,6E+11

SIS18 resonances

Misalignments do to ground motion

Attempt for beam based alignment measurement.

G. Franchetti et.a.

Major misalignment of SIS18 measured in 2013

Dynamic pressure issues

Lifetime of U28+ beams

P. Spiller

SIS18 multi-turn injection (MTI) efficiency

- The UNILAC->SIS18 multi-turn injection is one of the main "bottlenecks" for FAIR.
- Design goal: the UNILAC should provide the current and emittance (brilliance) to fill the (horizontal) SIS aperture to the space charge limit.
- Intermediate charge state heavy-ions: Losses well below 10 % to avoid vacuum + lifetime degradation.

Slow extraction

1) Estimation of beam loss

 Identification of factors and modeling of the spill structure

CBM@SIS100: Micro-spill structure

At present: Significant data quality loses because of micro-spill structure.

- reduced data quality and rate capability !
- load on detectors !
- Not acceptable for CBM@SIS100 !

Ripple Mitigation: Spill Feedback

- First attempts in 1994
 - Artificial ripple on PCs to measure beam transfer function during SE
 - Group delay of 50us measured
 - Promising attempts at spill regulation, but not continued
- Realization with KO extraction relatively simple
 - Might be testable short-term using analog feedback
 - For FAIR real-time digital intensity signal should be provided by experiments (covered by FC2WG)

D. Ondreka

ESR Operation

Fast injection (stable ions / RIBs) Stochastic cooling (\geq 400 MeV/u) Electron cooling (3 - 430 MeV/u) Laser cooling (C³⁺ 120 MeV/u) Internal gas jet target Laser experiments Acceleration/deceleration (down to 3 MeV/u) Fast extraction (reinjection to SIS / HITRAP) Slow (resonant) extraction Ultraslow extraction (charge change) Beam accumulation Multi charge state/multi component operation Schottky mass spectrometry Isochronous mode (TOF detector)

All these modes work somehow, but all are far from perfect or routine.

M. Steck, HIC4FAIR Workshop Detectors & Accelerators, Hamburg, 28-31 July 2015

Layout of the CR

Isochronous mode ($\gamma_{tr} = \gamma$) is required for fast mass measurements. Methods: TOF, Schottky spectroscopy

RIBs from SFRS: 100 mm*mrad; $\Delta p/p=1\%$; $t_b=50$ ns

HELMHOLTZ

Isochronous condition at CR

$$\frac{\Delta f}{f} = -\frac{1}{\gamma_{tr}^2} \frac{\Delta (m/q)}{m/q} + \left(1 - \frac{\gamma^2}{\gamma_{tr}^2}\right) \frac{\Delta v}{v} + \left(\frac{\delta f}{f}\right)_{error}$$

Ideal isochronicity can be guarantied only for one m/q ion applying correction scheme (sextupole, octupole, decapole correctors).

O. Dolinsky

Frequency calibration by velocity measurement with two TOF detectors.

Basic beam parameters

		Antiprotons		RIBs		Mass measurements
		SIS100 – pSep - CR –HESR		SIS100 - SFRS - CR - HESR		SIS100-SFRS-CR
		Injection into CR	Extraction to HESR	Injection into CR	Extraction to HESR	Injection Into CR
Kinetic energy	MeV/u	3000	3000	740	740	400 - 790
∆р/р	%	6	0.2 ?	3	0.1	1
Emittance	mm*mrad	240	5	200	0.5	100
Bunch length	ns	50	400	50	500	50
Number of particles		2 x 10 ⁸	10 ⁸	10 ⁸	10 ⁸	1 - 10 ⁸
Cooling time	S	10		1.5		-
Cycle time	S	10		1.5 - 5		1.5
Beam loss	%	30	20 ?	10	1	0

6 5 1

The issue of Magnetic field locality

Stephan Russenchuck

80

10-4

-60

-40

-20

0

20

40

60

-80

0

Stephan

40

web page: https://indico.gsi.de/conferenceDisplay.py?confId=2352

Long term storage of high intensity beams

Optional: 8 injections and up to 4E13 protons ('space charge limit').

Space charge and resonances

Transitions crossing in SIS100 (protons).

- Momentum acceptance
 - · Bunch length shrinks sharply close to transition
 - Momentum spread peaks correspondingly
 - Momentum acceptance critical when dispersion is large
 - Potential cures:
 - Transition jump to escape peak
 - Optics with small dispersion
- Longitudinal space charge
 - Bunch lengthening below transition
 - Bunch shortening above transition
 - Bunch length mismatch after transition crossing
 - · Effects quadrupole oscillations
 - · May lead to significant blow-up if large and undamped
 - Potential cures:
 - Transition jump fine tuned to match bunch length
 - Dilution to reduce long. space charge
 - Damping of oscillations with feedback

D. Ondreka

Transition Shift Scheme: Distorted Buckets Near Flattop

- Longitudinal dynamics near flattop
 - Phase slip becomes very small
 - Higher orders can't be neglected
 - Bucket dominated by new fixed point
 - Shorter bunches with higher momentum spread
 - Asymmetry in momentum distribution
 - Chromaticity correction to $\Delta Q = \pm 0.05$ helps
 - Larger bucket due to reduction of n₁
- Implications
 - Without field errors no problems
 - Results with field errors ambiguous
 - Short-term (500 turn) dynamic aperture reasonable
 - Long-term tracking simulations (32000 turns) give losses of few per cent
- Limitation of present studies
 - Only stationary buckets, no beam loading
 - Origin of losses needs to be better understood
 - Further studies necessary

D. Ondreka

HIRFL (Heavy Ion Research Facility in Lanzhou)

NICA Complex

HIRFL (Heavy Ion Research Facility in Lanzhou)

HIAF main design parameters of typical U^{34+} ion beam. ppp denotes particle per pulse.

Machine	Ion	Energy	Intensity
ECR source	U^{34+}	60 kV/q	0.02 pmA
LIS source	U^{34+}	60 kV/q	0.1 pmA
HISCL	U^{34+}	25 MeV/u	0.015-0.075 pmA
	U^{76+}	40 MeV/u	0.003–0.015 pmA
ABR-45	U^{34+}	1.2 GeV/u	$0.25 - 1.3 \times 10^{11} \text{ ppp}$
	U^{76+}	3.4 GeV/u	$0.5-2.5 \times 10^{10} \text{ ppp}$
CSR-45	U^{34+}	1.2 GeV/u	$1.0-5.0 \times 10^{11} \text{ ppp}$
	U^{76+}	3.4 GeV/u	$0.2 - 1.0 \times 10^{11} \text{ ppp}$
	U^{92+}	4.4 GeV/u	$0.2 - 1.0 \times 10^{11} \text{ ppp}$
MCR-45-1(2)	U^{34+}	1.2 GeV/u	$1.0-5.0 \times 10^{11} \text{ ppp}$
	U^{76+}	3.4 GeV/u	$0.2 - 1.0 \times 10^{11} \text{ ppp}$
	U^{92+}	4.4 GeV/u	$0.2-1.0 \times 10^{11} \text{ ppp}$

J.C. Yang, NIM B 317 (2013) 263–265

by PSI, Dec. 2014

Beam Dynamics meets Vacuum, Collimation, and Surfaces

Workshop 215, CERN

Advanced Optics Control

Mechanisms

Collaboration meeting 2014, CERN Space charge, Oxford 2015

Beam dynamics *meets* Diagnostics

Challenges

Study the machine from beam-based measurements

- 1. Control system usable, and flexible for beam studies
- 2. Availability of diagnostics that is user-friendly, and which limits are clear
- 3. Development of theoretical / numerical tool

The Foundation of everything

The understanding of the machine linear optics

The pandora-box

The understanding of the machine nonlinear Dynamics

Challenges II

Taming Space Charge: For long term storage → resonance compensation How about shaping the beam ? → towards flat beams? Electron lenses are trendy, but do they work ?

Taming instabilities: Advances in feed-back systems technology

The difficulty of the 3D world: Modeling the 3D dynamics, requires a complete Understanding of the dynamics & computer science

Reality and Myths: Genetic Algorithms are applicable beyond light sources experience?

Advent of new concepts:

Do we learn know how transfer from the IOTA Experience ?

Challenges III

The control issue and complexity: User friendly control system ? Is the LSA the ultimate control system ?

Synergies across communities: BD & Magnets & Diagnostics & Vacuum & RF

