Desired optics developments for colliders, storage rings, final-focus systems & plasmas

February, 2017. Valencia R. Tomás Theory of the Alternating-Gradient Synchrotron:

$$\left(\frac{\Delta\beta}{\beta}\right)_{\rm max} = 4.0 \left(\frac{\Delta k}{k}\right)_{\rm rms}$$

"Thus if the variation in k from magnet to magnet were 1% (...) we would have a β -beating of 4%. Any particular machine (...) would be unlikely to be worse by more than factor of 2."

 \rightarrow Expected β -beating below 8% for *any machine*

120% in LHC, commissioning 2016

\approx **400%** in PEP-II, commissioning 2005

Even $\Delta\beta/\beta \approx 700\%$ was reached when LER tune was pushed closer to the half integer

Colliders in the tune space

β^* in hadron colliders

β^* in FCC-hh? 5 cm?

TABLE VI. Summary of the presented triplet options. The shielding thickness defines the minimum β^* . The β^* used for FLUKA studies was set to the "ultimate" goal where possible and mainly impacts the dose via the crossing angle.

R. Martin et al, submitted to Phys. Rev. Accel. & Beams

Luminosity imbalance CMS/ATLAS

ATLAS was not happy to get lower luminosity (due to β -beating). Now 5% imbalance is too large.

HL-LHC: β^* accuracy Vs tune resolution

F. Carlier et al, Phys. Rev. Accel. Beams, 20, 011005 (2017)

1% accuracy challenging for β^* below 0.2 m.

β -beating versus time

Comparing β measurement techniques

	Method vs. Nominal model	Horizontal	Vertical	
ALBA	N-BPM (phase)	1.4	2.0	
	From amplitude	2.0	2.7	A. Langner et al,
	LOCO	1.1	1.6	
	Method 1 vs. Method 2			Phys. Rev. Accel. Beams
	N-BPM (phase) vs. LOCO	1.0	1.3	10 002002
	N-BPM (phase) vs. amplitude	1.7	1.9	19 , 092005
	From amplitude vs. LOCO	1.4	1.7	
	N-BPM using LOCO model			
	N-BPM (phase) vs. LOCO	0.8	1.1	
11	Relative difference of βs	rms_x	rms_y	=
ESRF		[‰]	[‰]	L. Malina et al,
	N-BPM vs Amplitude	17	12	to be published
	Amplitude vs ORM model	20	13	
	N-BPM vs ORM model	11	9	

Comparing β measurement techniques II

	Algorithm	$\Delta \beta_x / \beta_x$ %	$\Delta \beta_y / \beta_y$ %	
-S-II	no corr.	8	10	V. Smaluk et al, IPAC 2016
	LOCO	2.1	1.4	
	phase only ¹	2.3	1.8	
SL	phase&.1	2.8	1.7	
Z	ICA	2.6	1.6	
	MIA	2.8	1.7	
	DTBLOC	3.0	1.9	

Techniques agree to the ${\approx}1\%$ level

LHC optics correction

T. Persson et al, submitted to Phys. Rev. Accel. Beams LHC has reached below 2% rms β -beating

ΔQ_{\min} limits the resonance-free space

LHC beam-beam tune footprint and a hypothetical large coupling:

Coupling control versus time

Three world records via passive corrs.

FFS of future lepton colliders

	$L^*[m]$	$\beta_y^*[\mu m]$	$\xi_y \sim (\mathrm{L}^* / eta_y^*)$
CLIC	3.5	70	50000
ILC	4.5	480	9000
ATF2	1.0	100	10000
ATF2 Ultra-low	1.0	25	40000
SuperKEKB LER	0.9	270	3460
FCC-ee	2	1000	2000

ATF2 finding: Something is missing

M. Patecki et al, Phys. Rev. Accel. Beams **19**, 101001 \rightarrow Predictions are too optimistic \rightarrow Was it the same in SLC and FFTB?

Conclusion for Linear Colliders $\mathcal{L} \propto H_D \frac{n_{\gamma}^3}{\sqrt{\sigma_z}} \frac{1}{\sqrt{\epsilon_y \beta_y}} \frac{R+1}{R} \frac{\eta P_{wall}}{mc^2}$

Reduce the vertical betafunction and emittance as much as possible

Plasma-based linacs might lead to larger energy spreads

- ⇒ R&D required to get to same beamsizes as with conventional technology
- \Rightarrow Or reduce energy spread and take a hit in efficiency
- Smaller emittance need better sources
 - e.g. undulator-based damping?
 - But makes emittance preservation in linac even more challenging
- Smaller betafunction could be achieved using novel beam delivery system design
 - Plasma lenses?
 - Crystals?
 - Electron/proton lenses?
 - RF quadrupoles to correct correlated energy spread?

15

Space charge simulations with measured optics in J-PARC, K. Ohmi et al., IPAC 2013

K. Ohmi et al.: "Estimation of errors of accelerator elements is inevitable to study beam loss."

Momentum acceptance Vs β -beating in diffraction limited light sources

High Energy Photon Source Y. Jiao, Z. Duan, NIM-A 841 2017

In HEPS rms β -beating should be below 1.5%

Summary & outlook

- **★** Will hadron colliders' β^* reach the cm level?
- ★ Linear colliders' FFS not fully understood
 - Plasma will require even harder FFS
 - Novel FFS designs?
 - Need more R&D
- ★ β -beating after correction has reached the measurement resolution of $\approx 1\%$.
 - Luminosity imbalance, Diffraction limited SRs and Space charge limited rings would benefit from sub-% optics control
 - New faster and more accurate techniques are needed: AC ORM? AC dipole in light sources?
- ★ Transverse coupling accuracy limits still to be probed