

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

New Uses of Electron

Lenses

Vladimir Shiltsev, Fermilab

Eucard-2 Meeting, Valencia February 14, 2017

Electron Lenses: Tevatron, RHIC, LHC, FCC

- Proposed HOBBC-1993, LRBBC-97
- TEL-1 and TEL-2 : 2001, 2004
- RHIC electron lenses : 2014
- Springer Book : 2016
- LHC electron lenses : ~2021 (?)
- FCC e-lenses: ~2035 (??)
- Uniquely effective for:
- Beam-beam compensation
- Halo collimation
- Space-charge compensation

 now in textbooks

Electron Lenses for Super-Colliders

article Acceleration and Detection

Vladimir Shiltsev

LHC Electron Lens

levatron Electron Lens

RHIC Yellow Electron Len

Today: New Uses of Electron Lenses

Electron lenses for Space-Charge Compensation

• Electron lenses for Integrable Optics

Electron lenses for Landau damping

Part 1: Space Charge Compensation

A. Burov, G. Foster, V. Shiltsev, FNAL-TM-2125 (2000)

¥.Shiltsev | E-lenses..., Feb 14, 2017

SCC with electron lenses

 Instead of uniformly distributing electrons around the ring with low concentration :

 Electron columns will generate HIGH concentration of electrons but over a small fraction of ring circumference:

$$f = \frac{N_{EC}L_{EC}}{C} = \frac{\eta}{\gamma^2}$$

2/11/2015

First Example: SCC in 8 GeV Booster

Fermilab

FERMILAB-TM-2125 September 2000

Space-Charge Compensation in High-Intensity Proton Rings

$$J_e = J_p B_f \frac{C}{L} \frac{\beta_e}{\gamma_p^2 \beta_p^2 (1 - \beta_e \beta_p)},$$

A.V. Burov, G.W. Foster, V.D. Shiltsev Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510

	Emittance Upgrade	Double Intensity	
maximum e-current J_e , A	12.7	25.4	
e-beam length	3 lenses, each $L = 4 \text{ m long}$	3 lenses, each $L = 4 \text{ m long}$	
rms e-beam size, σ_e , mm	4.5	8	
cathode radius, mm	12	20	
B-field in gun/main solenoid, kG	3/11	4/13	
e-beam energy U_e , kV	80kV	80 kV	
anode-cathode voltage U_a , kV	26	41	
HV RF modulator power, kW	20	50	

<u>To study</u>: coherent modes and emittance growth

2/11/2015

🚰 Fermilab

Simulations : FNAL Booster (Yu.Alexahin & V.Kapin, 2007)

Booster: 400 MeV, 474 m P=24 N_p~4.5e12 dQ_sc=-0.3

7

Figure 2. Normalized beam intensity and emittances vs turn number at $N_b = 6 \cdot 10^{10}$, $n_{columns} = 24$ and indicated values of the compensation factor *f*.

"space charge compensation with e-lenses works"

V.Shiltsev | E-lenses..., Feb M^{2017} compensators the better (24 \rightarrow 12 \rightarrow 3 M^{2017} minimum)

Simulations : KEK PS (S.Machida, 2001)

nu_y

2/11/2015

Simulations: CERN PS-B (M.Aiba,2007)

Proceedings of PAC07, Albuquerque, New Mexico, USA Table 1: Parameters of the CERN PS and the PS Booster (PSB) proton beams corresponding to the "ultimate" LHC.

	variable	symbol	PSB	PS	
	kin. energy	$E_{\rm kin}$	50 MeV	1.4 GeV	
m	circumference	C	157 m	628 m	
	protons/bunch	N_b	$2.5 imes 10^{12}$	$2.5 imes 10^{12}$	
	protons/beam	$N_{ m t}$	$2.5 imes 10^{12}$	$1.5 imes10^{13}$	
	tr. n. emittance	$eta\gamma\epsilon$	$2.5~\mu{ m m}$	$3 \ \mu m$	
	full bunch length	l_b/c	750 ns	180 ns	
	harmonic number	h	1 (&2)	7	
	av. beta function	$\beta_{x,y}$	5 m	15 m	
	superperiodicity	P	16	10	
	betatron tunes	$Q_{x,y}$	4.29, 5.45	6.12, 6.24	
easee	revolution period	T_0	$1.7 \ \mu s$	$2.3 \ \mu s$	
imate	bunching factor	B_{f}	2.2	3.4	_
sitv →	s.c. tune shift	ΔQ^{SC}	0.76	0.35	

PS Booster: 50 MeV, 157 m P=16 dQ_sc ~ -0.5

Need to increasee for LHC ultimate intensity →

2/11/2015

🚰 Fermilab

Simulations: CERN PS-B (M.Aiba,2007)

moderate beam intensity ($\sim 1/2$ the nominal)

 $Q_{x0} = 6.2 \quad Q_{y0} = 6.2 \quad \Delta Q = 0.1$

 "space charge compensation with e-lenses works in principle... desrves further studies"

- No evidence for coherent modes limitation in PSB and PS
 - Concern of overcompensation in the head and tail
 - More compensators the better (8 is better than 4).

Issues to Explore in Theory & Experiment

- 1. Stability of the system (transverse motion)
- 2. (Dynamic) matching of transverse p-charge distribution
- 3. Appropriate longitudinal compensation (for not-flat proton bunches)
- 4. Electron lenses vs electron columns
- 5. Practical implementation (in existing facilities)
- ⇒ IOTA ring (see slides later)

Part 2 : Electron Lenses for Integrable Optics (Danilov, Shiltsev 1997, Danilov, Nagaitsev 2010)

- Employment of special nonlinear fields to stabilize particle's motion:
 - Make motion limited and long-term stable (usually involves additional "integrals of motion")
 - Can be Laplacian (with magnets, no extra charge density involved)
 - Or non-Laplacian (with externally created charge e.g. special electron lens with *E(r) ~r / (1+r^2)*
 - (That's what IOTA is for test with electrons)
 - Should be directly applicable to protons with SC

Space Charge in Linear Optics

Space Charge in NL Integrable Optics

Part 3: Landau damping by e-lens

- E-lens effectively generates the tunespread needed for Landau damping of coherent beam instabilities
- Contrary to octupoles, e-lens does that without affecting the dynamic aperture (no impact on large A particles)

Analysis of the Stability Diagram with e-lens

Stability diagram (SD) is defined as a map of real axes n on the complex plane D:

$$D = \left(-\int \frac{J_x \partial F / \partial J_x}{n - lQ_s - DQ_x (J_x, J_y) + iO} dG \right)^{-1}$$
$$D = \Omega_c - l\overline{\omega}_s$$

To be stable, the coherent tune shift has to be below the SD.

For Gaussian E-Lens, the tune shifts (G. Lopez, 1993)

$$\Delta Q_{x}(J_{x}, J_{y}) = \Delta Q_{sc}(0) \int_{0}^{1} \frac{\left[I_{0}(\frac{J_{x}z}{2}) - I_{1}(\frac{J_{x}z}{2})\right]I_{0}(\frac{J_{y}z}{2})}{\exp[z(J_{x} + J_{y})/2]} dz.$$
$$J_{x,y} = \frac{a_{x,y}^{2}}{2} \frac{(2S^{2})}{2}$$

2/11/2015 **Control Control**

Both beams are round Gaussian, same rms sizes

Stability diagram in the units of the maximal tune shift

V.Shiltsev | E-lenses..., Feb 14, 2017

2/11/2015

‡ Fermilab

Both beams are round Gaussian, unequal sizes

Stability diagram in the units of the maximal tune shift

V.Shiltsev | E-lenses..., Feb 14, 2017

2/11/2015

‡ Fermilab

Both beams are round Gaussian, unequal sizes

V.Shiltsev | E-lenses..., Feb 14, 2017

Æ

2/11/2015

Another degree of flexibility: hollow e-lens

V.Shiltsev | E-lenses..., Feb 14, 2017

Compare SD for LHC octupoles, +500A

V.Shiltsev | E-lenses..., Feb 14, 2017

What e-lens could do for, e.g., LHC?

Let us assume the following e-lens parameters (very modest):

Beta_x,y	1 km
sigma_e/sigma_p	1
sigma_e	0.6 mm
sigma_cath	3 mm
j_max	2 A/cm^2
l_e	1.1 A
L_e	3 m
E_e	20 KeV

This rather moderate set of parameters corresponds to dQ_max=0.015, yielding <u>10-20 times larger SD than the Landau</u> <u>octupoles at 500 A</u>.

That brings us to....

IOTA

Integrable Optics Test Accelerator (the ring with 70 MeV/c p+ injector) at FAST

Fermilab Accelerator Science & Technology facility

50 MeV e- photoinjector and 250 MeV SRF Cryomodule elinac (e- injector to IOTA)

V.Sb2/ttste/20155 lenses..., Feb 14,

IOTA Ring Parameters

Nominal kinetic energy	e ⁻ : 150 MeV, p+: 2.5 MeV		
Nominal intensity	e ⁻ : 1×10 ⁹ , p+: 1×10 ¹¹		
Circumference	40 m		
Bending dipole field	0.7 T		
Beam pipe aperture	50 mm dia.		
Maximum b-function (x,y)	12, 5 m		
Momentum compaction	0.02 ÷ 0.1		
Betatron tune (integer)	3 ÷ 5		
Natural chromaticity	-5 ÷ -10		
Transverse emittance r.m.s.	e ⁻ : 0.04 μm, p+: 2μm		
SR damping time	0.6s (5×10 ⁶ turns)		
RF V,f,q	e ⁻ : 1 kV, 30 MHz, 4		
Synchrotron tune	e ⁻ : 0.002 ÷ 0.005		
Bunch length, momentum spread	e ⁻ : 12 cm, 1.4×10 ⁻⁴		

2/11/2015

Girders aligned, RF cavity installed, magnets ready, injection magnets and cable trays installed, etc etc

May 2016 : IOTA Electron Injector 50 MeV

IOTA Proton Injector

2.5 MeV Proton RFQ re-commissioning began:

- Ion source separated from RFQ in preparation for instrumentation.
- All parts requisitioned for refurbishment
- On track to re-commission in Q3
 FY2017

- Reconnected 325 MHz klystron to waveguide and coax.
- Continuing reconnection to RFQ
- On track to deliver beam in Q1 of FY2018

Summary

- 1. Electron lenses is now a proven, operationally tested technology... very flexible
- 2. New applications of e-lenses include
 - Electron lenses for space-charge compensation
 - Electron lenses for Integrable Optics
 - Electron lenses for Lanmdau damping

3. All this concepts need thorough development theory, modeling, prototyping, experimental beam tests (at IOTA or elsewhere)

4. It is highly collaborative activity – we all can participate and benefit – let's join forces!

Acknowledgements

- Input from:
 - Yu. Alexahin
 - A. Burov
 - S. Nagaitsev
 - G. Stancari
 - A. Valishev

Back-Up Slides

Integrable Optics Concept

- "Integrable Optics" solutions:
 - Make motion limited and long-term stable (usually involves additional "integrals of motion")
- Can be Laplacian (with special magnets, no extra charge density involved)
- Or non-Laplacian (with externally created charge by special e-lens E(~r/(1+r^2)
- Effect is fascinating

THE UNIVERSITY OF

Non-linear IOTA Magnet prototype on a test stand

IOTA Collaboration

Massachusetts Institute of Technology

IOTA Ring: 40 m ; 2.5 MeV p+ or 150 MeV e-

2/11/2015 **Cermilab**

Coherent Modes

Parameter	KEK-B	FNAL-B	ISIS	AGS	AGS-B	CERN PS	CERN PS-2
ν_x/ν_y	2.17 / 2.3	6.7 / 6.8	3.7 / 4.2	8.75 / 8.75	4.8 /4.9	6.22 / 6.22	6.22 / 6.28
$\Delta \nu_{\rm exp}$	0.23	0.4	0.4	0.58	0.5	0.27	0.36
$\Delta \nu_{\rm inc}$	0.17	0.2	0.2	0.25	0.3	0.22	0.22
$\Delta \nu_{\rm coh}$	0.27 / 0.08	0.36 / 0.08	0.32	0.33	0.07 / 0.2	0.27	0.33

dipole

2

37

symmetric

- Is that a real concern? need computer modeling
- Even if yes dipole FB may hele Fermilab

incoherent dipole

Space Charge Compensation in IOTA

