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Outline

⇒ Brief history of instability observation in LHC

⇒ 2015-2016: 
• 25 ns beam and 6.5 TeV

• LHC hypercycle and types of instabilities observed

• Role of electron cloud

⇒ Lesson learnt and open questions



Recap of LHC operation over the years

o 2010-2011
• Bunch spacing gradually decreased from 150 ns to 50 ns

• Nominal bunch intensity (1.2e11 p/b)

• Transverse emittance gradually decreased from 2.5 to 1.2 mm at injection

• Single bunch instabilities observed during early commissioning phase over the 
ramp suppressed with octupoles

• In general, beams stable except residual ecloud effects in 2011(?)!
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Recap of LHC operation over the years

o 2010-2011
• Bunch spacing gradually decreased from 150 ns to 50 ns

• Nominal bunch intensity (1.2e11 p/b)

• Transverse emittance gradually decreased from 2.5 to 1.2 mm at injection

• Single bunch instabilities observed during early commissioning phase over the 
ramp suppressed with octupoles  expected with LHC impedance model

• In general, beams stable except residual ecloud effects in 2011(?)!
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simulation

Question still being addressed: why did it only appear at ~2 TeV ? 



Recap of LHC operation over the years

o 2010-2011
• Bunch spacing gradually decreased from 150 ns to 50 ns

• Nominal bunch intensity (1.2e11 p/b)

• Transverse emittance gradually decreased from 2.5 to 1.2 mm at injection

• Single bunch instabilities observed during early commissioning phase over the 
ramp suppressed with octupoles

• In general, beams stable except residual ecloud effects in 2011(?)!

o 2012
• 50 ns operation in almost fully ecloud-free environment 

− Ecloud only in uncoated interaction regions, notably the triplets

• Bunch intensity increased up to 1.7e11 p/b (1.7 mm emittance at injection)

• Many instabilities mainly observed at top energy (4 TeV) before colliding
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Recap of LHC operation over the years
2012 Instabilities

o Mainly observed in the phases just before going into colliding beams (betatron
squeeze and adjust)

o First part of the year (before Fill #2950)
• Low positive chromaticity (~2 units) and negative polarity of octupoles

• Many fills without instabilities, but impact of instabilities important, when present

o Second part of the year (after Fill #2950)
• High positive chromaticity (~15 units) and positive polarity of the octupoles

• Instabilities were observed at the end of the squeeze, continuing through ADJUST, 
stabilised by head-on collision – no large impact of instabilities
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Recap of LHC operation over the years

o 2010-2011
• Bunch spacing gradually decreased from 150 ns to 50 ns

• Nominal bunch intensity (1.2e11 p/b)

• Transverse emittance gradually decreased from 2.5 to 1.2 mm at injection

• Single bunch instabilities observed during early commissioning phase over the 
ramp suppressed with octupoles

• In general, beams stable except residual ecloud effects in 2011(?)!

o 2012
• 50 ns operation in almost fully ecloud-free environment 

− Ecloud only in uncoated interaction regions, notably the triplets

• Bunch intensity increased up to 1.7e11 p/b (1.7 mm emittance at injection)

• Many instabilities mainly observed at top energy (4 TeV) before colliding

o 2015-2016
• 25 ns operation with strong electron cloud

• Nominal bunch intensity (1.2e11 p/b)

• Transverse emittance gradually decreased from 2.7 to 1.6 mm at injection

• Focus of the next slides …
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• Injection
 Up to 23 injections for 2220 bunches, crucial phase for instabilities, incoherent blow-
up observed

• Ramp 
 Roughly 20 minutes of combined ramp and squeeze, beam typically stable, mainly 
incoherent blow-up observed

• Flat-top 
 Uncritical, beta* at 3 m, beam stable

• Squeeze 
 Down to 40 cm, very dynamic phase, highly relying on good control of machine 
parameters – some issues with instabilities when linear coupling not well corrected, surge of 
strong non-linearities now blurring the workspace

• Adjust 
 Long-range beam-beam comes into play, instabilities sporadically observed

• Stable/colliding beams 
 Luminosity production, instabilities observed and vanished later during the year –
possible mechanism related to electron cloud identified

23/01/2017
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o Electron cloud instability determines the machine settings at injection

o Key lesson: machine settings for stable operation in e-cloud dominated 
environment
• Tunes farther from third order resonance – (0.27, 0.295) instead of (0.28, 0.31) –

to better accommodate electron cloud tune spread

• Chromaticities of 20/20 and octupoles at 10 A for 2.5 mm emittance, high gain for 
the transverse damper



• Not enough, if tunes drift close to each other, coupling makes beam unstable 
(loss of Landau damping)
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• Fill 4642 with uncorrected tune drift
 blow-up during injection

• Coupling C- for these fills was below 
0.004

• Fill 4643 with tune correction
 no blow-up

• Measurement, monitoring and correction 
of tunes and coupling are crucial 
especially during injection



• Not enough, if tunes drift close to each other, coupling makes beam unstable 
(loss of Landau damping)

• Two vital applications have been in put in place to prevent the issues with 
linear coupling observed in 2015
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Application for correction 

for Laslett tune shift –

M. Schaumann

Application for coupling correction at 

injection – T. Persson

• Measures: tune control with coupling correction + e-cloud 

tunes (.27, .295) with improved separation.

• Conclusion: There have been no issues with instabilities 

relating to coupling at injection in 2016
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BCMS beam (low emittance variant of 25 ns beam)

• Reduction of transverse emittance from injectors (BCMS beam) awakened beam instabilities

• Strong blow-up required an increase in octupole current to 40 A (by a factor 2)

• The required machine settings to ensure beam stability were confirmed in a dedicated study
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Kevin Li - LHC Performance Workshop 2017

• Fill 5217 – Thursday, 18. August afternoon – BCMS physics beam with operational settings

• Injected BCMS beams with different octupole and damper settings

Octupole knob -1.5 -1.5 -2.5 -2.5 -3.0 -4.0 -4.0 -4.0

Damper gain normal double double normal normal 15/15 10/15 20/15

• Signature: strong blow-up of BCMS beam at injection

• Measures: increase octupole current from 19.5 A to 40 A (damper gain has little 

impact)

• Conclusion: running at increased octupole currents renders the BCMS beam 

stable with no critical impact on beam lifetime

BCMS beam
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• Fill 5217 – Thursday, 18. August afternoon – BCMS physics beam with operational settings

• Injected BCMS beams with different octupole and damper settings

Octupole knob -0.5 -1.0 -1.0 -1.0 -2.0 -4.0 -4.0 -4.0

Chromaticity 5/5 5/5 10/10 15/15 15/15 15/15 10/15 20/15

• Injection of 8b+4e filling scheme designed to suppress e-cloud,

confirmed experimentally in 2015

• Without e-cloud, beam can indeed be injected at very low levels of

chromaticity and octupoles!

8b+4e beam
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• Fill 5217 – Thursday, 18. August afternoon – BCMS physics beam with operational settings

• Injected BCMS beams with different octupole and damper settings

Octupole knob -0.5 -1.0 -1.0 -1.0 -2.0 -4.0 -4.0 -4.0

Chromaticity 5/5 5/5 10/10 15/15 15/15 15/15 10/15 20/15

• Signature: the 8b+4e scheme allows for stable operation at very low levels of

chromaticity and octupoles – the BCMS continues to blow up

• Measures: adjust machine parameters, in particular chromaticity, to stabilizing

regime

• Conclusion: e-cloud still present in 2016 and defining the machine settings

at injection (and throughout the cycle) with practically no margins –

chromaticity being the main knob as was already expected from simulations
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• Only instabilities observed at beginning of
ramp were due to overcorrected snapback
right after an MD block
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• Only instabilities observed at beginning of
ramp were due to overcorrected snapback
right after an MD block

• Coupling during the squeeze is critical due
to reduced tune separation

• Losses and emittance blow-up in beam 1 right
after squeeze

• Coupling not well corrected caused instabilities
after a Technical Stop

• |C-| re-measured by OMC team: ~5e-3 at end
of squeeze
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• Injection
 Up to 23 injections for 2220 bunches, crucial phase for instabilities, incoherent blow-
up observed

• Ramp 
 Roughly 20 minutes of combined ramp and squeeze, beam typically stable, mainly 
incoherent blow-up observed

• Flat-top 
 Uncritical, beta* at 3 m, beam stable

• Squeeze 
 Down to 40 cm, very dynamic phase, highly relying on good control of machine 
parameters – some issues with instabilities when linear coupling not well corrected, surge of 
strong non-linearities now blurring the workspace

• Adjust 
 Long-range beam-beam comes into play, instabilities sporadically observed

• Stable/colliding beams 
 Luminosity production, instabilities observed and vanished later during the year –
possible mechanism related to electron cloud identified

23/01/2017
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o No coherent instabilities observed in most of the fills

• Some vertical instabilities in stable beams at beginning of 2016

• Sporadic instabilities in adjust, after switching to low transverse emittances

o Usually only few bunches affected and no large impact on luminosity
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o Coherent instabilities in stable beams
• Always in the vertical plane and affecting the last bunches of long trains

• Resulting in emittance growth but no beam loss
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o Coherent instabilities in stable beams
• Always in the vertical plane and affecting the last bunches of long trains

• Resulting in emittance growth but no beam loss

• Data analysis showed that most of instabilities occurred for bunch intensities 
between 0.7e11 and 1.1e11
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o Coherent instabilities in stable beams
• Always in the vertical plane and affecting the last bunches of long trains

• Resulting in emittance growth but no beam loss

• Data analysis showed that most of instabilities occurred for bunch intensities 
between 0.7e11 and 1.1e11

o Vertical chromaticity increased from 15 to 22 units after going in collision 
• Blow-up mitigated, instability still sporadically detected on the bunch-by-bunch 

luminosity data

• Clear improvement on the number of unstable bunches

Fill 4964, Q’v = 15 Fill 4988, Q’v = 22
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o Coherent instabilities in stable beams  Simulations
• Electron cloud in the dipoles tends to form a central stripe for lower bunch 

intensities
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o Coherent instabilities in stable beams  Simulations
• Electron cloud in the dipoles tends to form a central stripe for lower bunch 

intensities

• The central density threshold (5e11 m-3) is crossed when the bunch intensity 
decreases with Q’=15

• The threshold becomes much higher for Q’>20

o Explanation also consistent with the disappearance of this phenomenon (due to 
scrubbing)

Instability threshold estimated 
by PyEC-PyHT simulations

0.7e11

1.1e11

2.3e11
HL-LHC
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o Coherent instabilities in Adjust mode

• Mainly affecting bunches at the head and tail of trains

• Coherent signal seems to appear in correlation with the TOTEM bump

• No observations in single beam

o Still under study!



Summary

o Beam instabilities have been observed at the different LHC beam 

processes. Some lesson learnt:

• Narrow range of machine settings to keep beam stable along the cycle

• Instabilities occur if coupling exceeds a certain threshold (at different stages)

• Chromaticity settings are crucial along the cycle and can’t be relaxed

• Octupoles settings have to be adapted according to beam emittance

• Transverse damper indispensable to preserve beam stability all along the 

cycle

o Sources of instability

• Electron cloud (with 25 ns beams)  tends to become better with scrubbing

• Machine impedance and loss of Landau damping

o Main question is to gain confidence in the scaling with bunch intensity (both 

of electron cloud and instability thresholds based on the models)
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o See you in Benevento 

on 18-22 September!

ICFA mini-WORKSHOP ON 

 IMPEDANCES AND BEAM INSTABILITIES 
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International Advisory Committee 
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Topics 
- Beam coupling impedance/wake calculation 
- Beam coupling impedance measurements 
- Beam energy loss and RF heating 
- Modeling of beam instabilities (analytical & numerical) 
- Observations and mitigation of beam instabilities 
 

Deadline for abstracts: 
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