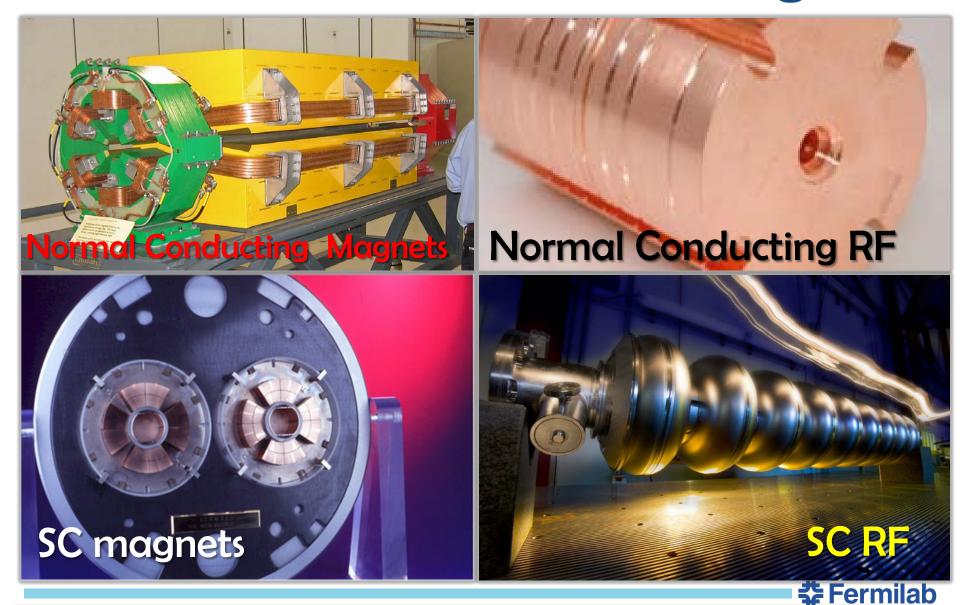


On Cost of Future Colliders


and Options/Preemptive Measures

Vladimir Shiltsev

Fermilab *, Batavia, IL , USA Accelerator Physics Center February 15, 2016

Four "Feasible" Technologies

TPC

Length Site

Analysis: 2014 JINST 9 T07002

17 "Data Points" - Costs

of Big Accelerators:

- **Actually built:**
 - RHIC, MI, SNS, LHC
 - Under construction: XFEL, FAIR, ESS
 - Not built but costed:
 - SSC, VLHC, NLC
 - ILC, TESLA, CLIC, Project-X, Beta-Beam,

SPL, v-Factory

Wide range:

- 4 orders in *E*nergy, >1 order in Power, >2 orders in Length
- Almost 2 orders in cost
 - (normalized to US TPC)

	C 05τ (D Φ)	Lineigj	riccolorator	Comments	Longin	Ditto	
	Year		technology			power	range
		(TeV)			(km)	(MW)	(Y14B\$
SSC	11.8 B\$	40	SC Mag	Estimates changed	87	~ 100	19–25
	(1993)			many times [6–8]			
FNAL MI	260M\$	0.12	NC Mag	"old rules", no OH,	3.3	~ 20	0.4-0.5
	(1994)			existing injector [9]			
RHIC	660M\$	0.5	SC Mag	Tunnel, some	3.8	~ 40	0.8–1.2
	(1999)			infrastructure, injector			
				re-used [10]			
TESLA	3.14 B€	0.5	SC RF	"European	39	~ 130	11-14
	(2000)			accounting" [11]			
VLHC-I	4.1 B\$	40	SC Mag	"European	233	~ 60	10-18
	(2001)			accounting", existing			
				injector [12]			
NLC	~ 7.5 B\$	1	NC RF	\sim 6 B\$ for 0.5 TeV	30	250	9–15
	(2001)			collider, [13]			
SNS	1.4 B\$	0.001	SC RF	[14]	0.4	20	1.6-1.7
	(2006)						
LHC	6.5 BCHF	14	SC Mag	collider only —	27	~ 40	7-11
	(2009)			existing injector, tunnel			
				& infrstr., no OH,			
				R&D [15]			
CLIC	7.4-8.3B	0.5	NC RF	"European	18	250	12-18
	CHF(2012)			accounting" [16]			
Project X	1.5 B\$	0.008	SC RF	[17]	0.4	37	1.2-1.8
	(2009)						
XFEL	1.2 B€	0.014	SC RF	in 2005 prices,	3.4	~ 10	2.9-4.0
	(2012)			"European			
				accounting" [18]			
NuFactory	4.7–6.5 B€	0.012	NC RF	Mixed accounting,	6	~ 90	7–11
	(2012)			w. contingency [19]			
Beta-	1.4–2.3 B€	0.1	SC RF	Mixed accounting,	9.5	~ 30	3.7-5.4
Beam	(2012)			w. contingency [19]			
SPL	1.2–1.6 B€	0.005	SC RF	Mixed accounting,	0.6	~ 70	2.6–4.6
	(2012)			w. contingency [19]			
FAIR	1.2 B€	0.00308	SC Mag	"European	~ 3	~ 30	1.8-3.0
	I	I	_		1	1	I

Accelerator

Comments

accounting" [20], 6

rings, existing injector

"European

accounting" [21]

"European

accounting" [22, 23]

34

0.4

230

37

7.8 B\$

(2013)

1.84 B€

(2013)

ILC

ESS

(2012)

0.5

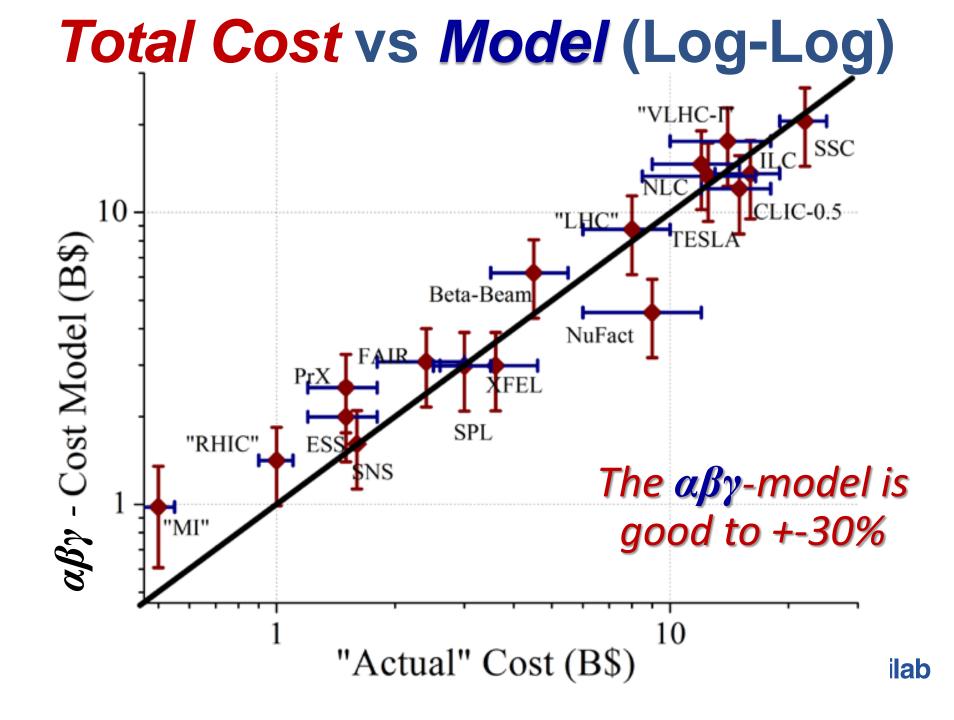
0.0025

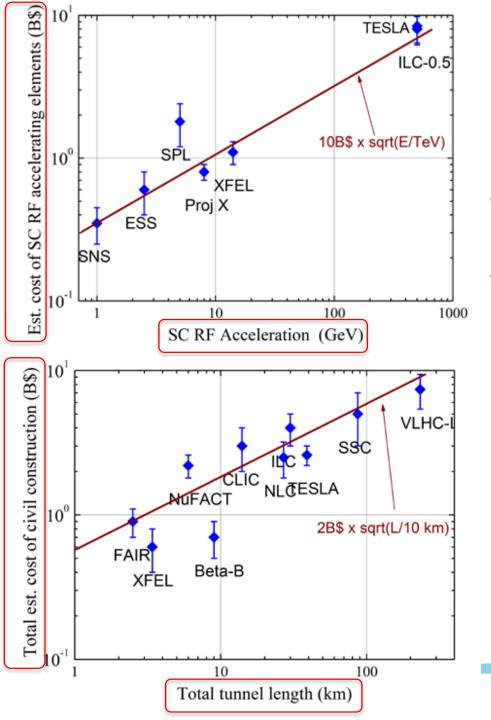
SC RF

SC RF

13-19

! WARNING!


αβy - Cost Estimate Model:


Cost(TPC) =
$$\alpha L^{1/2} + \beta E^{1/2} + \gamma P^{1/2}$$

- a) ±33% estimate, for a "green field" accelerators
- **b)** "US-Accounting" = TPC! (~2 × European Accounting)
- c) Coefficients (units: 10 km for L, 1 TeV for E, 100 MW for P)
 - α≈ 2B\$/sqrt(L/10 km)
 - β≈ 10B\$/sqrt(E/TeV) for SC/NC RF
 - β≈ 2B\$ /sqrt(E/TeV) for SC magnets
 - β≈ 1B\$ /sqrt(E/TeV) for NC magnets
 - γ≈ 2B\$/sqrt(P/100 MW)

USE AT YOUR OWN RISK!

CONTRACHT O 2012 FOUNTIL CORNER EXCISION

Comment:

Sqrt-functions are quite accurate over wide range because such dependence well approximates the "initial cost" – effect:

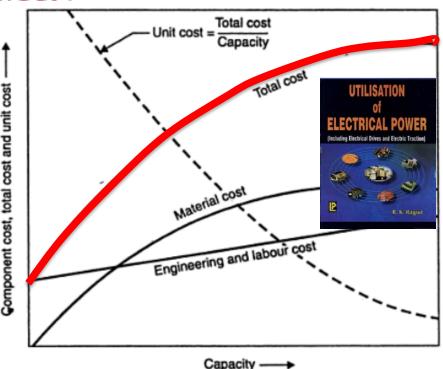


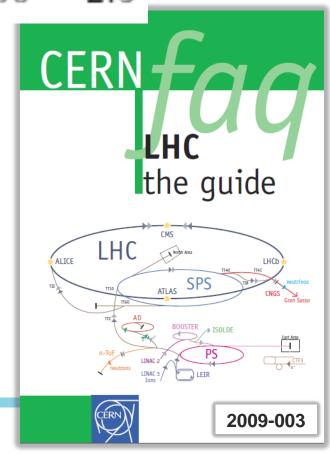
Fig. 9.5. Variation of costs of power plant versus its capacity.

Take LHC as an Example:

- αβγ Model:
 - 40 km of tunnels
 - 14 TeV c.o.m SC magnets
 - ~150 MW of site power

$$2\sqrt{40/10} = 4$$

 $2\sqrt{14} = 7.5$

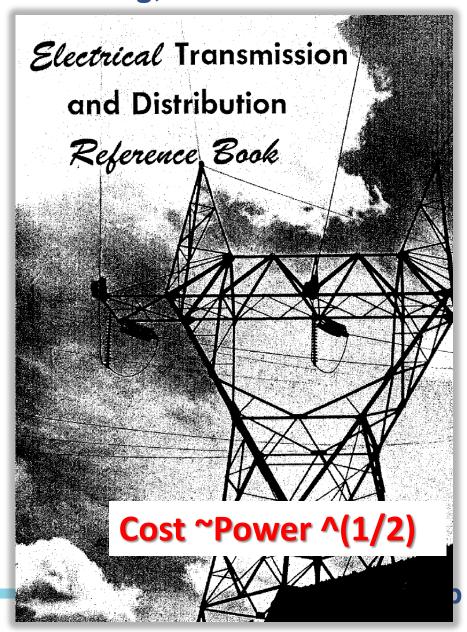

 $2\sqrt{150/100} = 2.5$

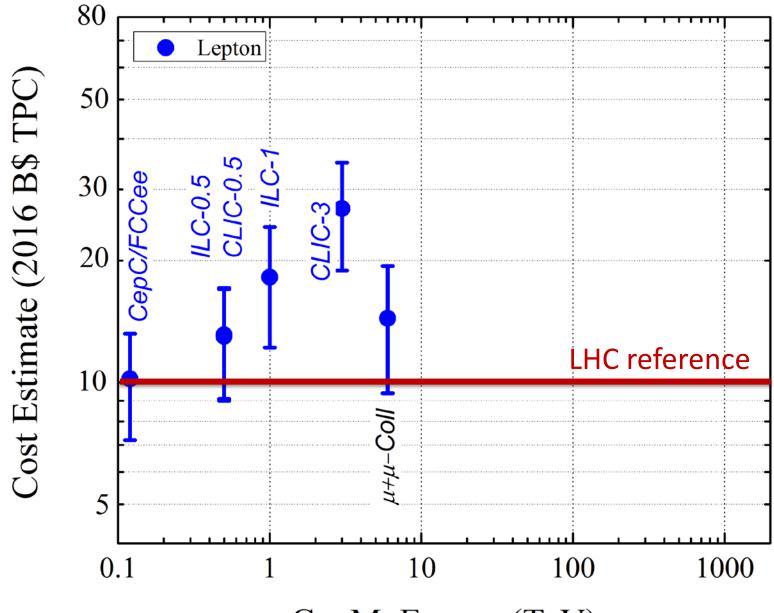
TOTAL PROJECT COST: 14B\$ ± 4.5B\$

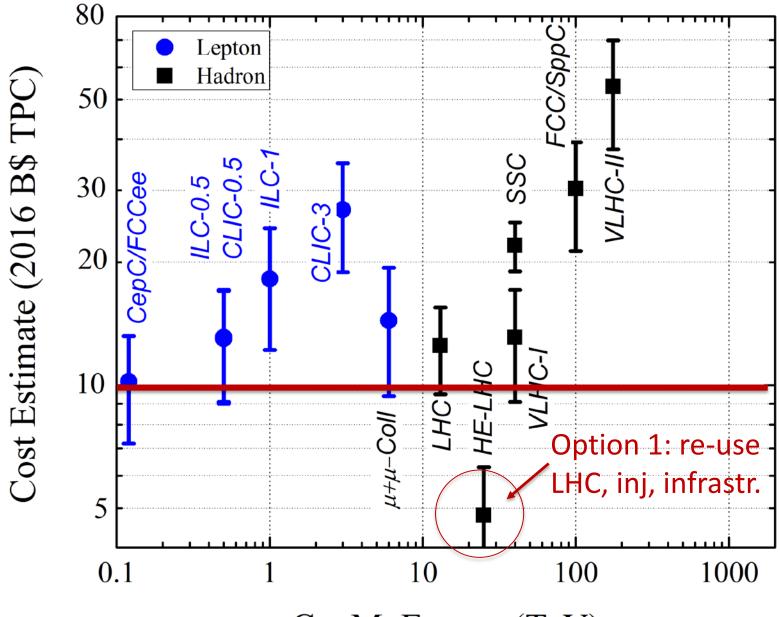
- CERN LHC Factbook (2009):
 - 6.5 BCHF, incl. 5 BCHF for accelerator (European Accounting)
 - $x 2 to US TPC \rightarrow 10 BCHF=10B$$
 - Cost of existing injector complex ~30-40%3-4 B\$

TPC: ~13-14B\$

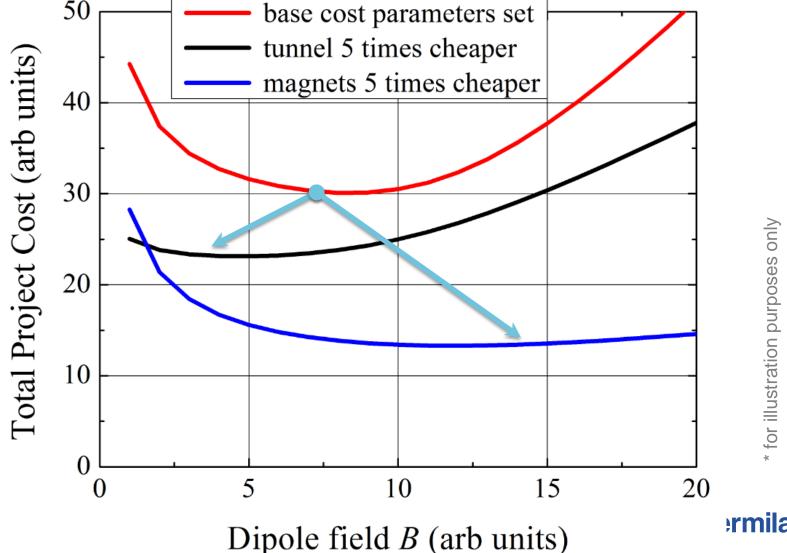
(of which CERN paid 10 over ~8 yrs)

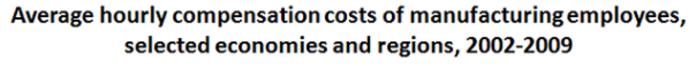


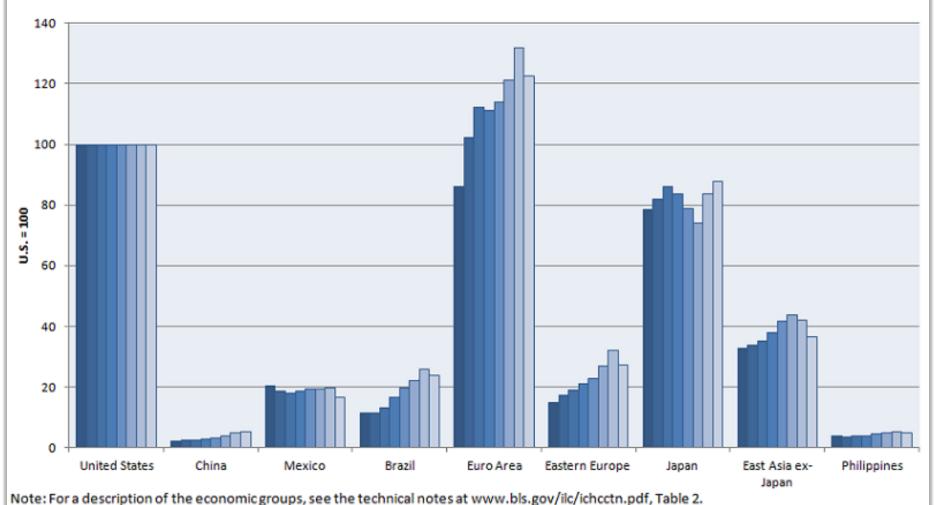

Important Note: Two out of Three Factors in the Model are Independent from Our R&D Efforts – Tunneling, Power Infrastructure


Do not expect Cost ~ $(L \times D^2)$ = meter^3!

Cost $\sim L^{\wedge}(0.4-1) D^{\wedge}(0.6-1.5)$




C.o.M. Energy (TeV)


Option 2: Develop Technology to Lower Cost

100 TeV pp: Qualitative Cost Dependencies

Option 3: "Move to China!"

Source: U.S. Bureau of Labor Statistics, International Labor Comparisons.

SSRF China

- 432 m
- 3.5 GeV
- **1.2B RMB** 2007

Spring-8

Japan

- 1436 m
- 8 GeV
- 11 BY

1997

Diamond *UK*

- 562 m
- 3 GeV
- 383 M £

2007

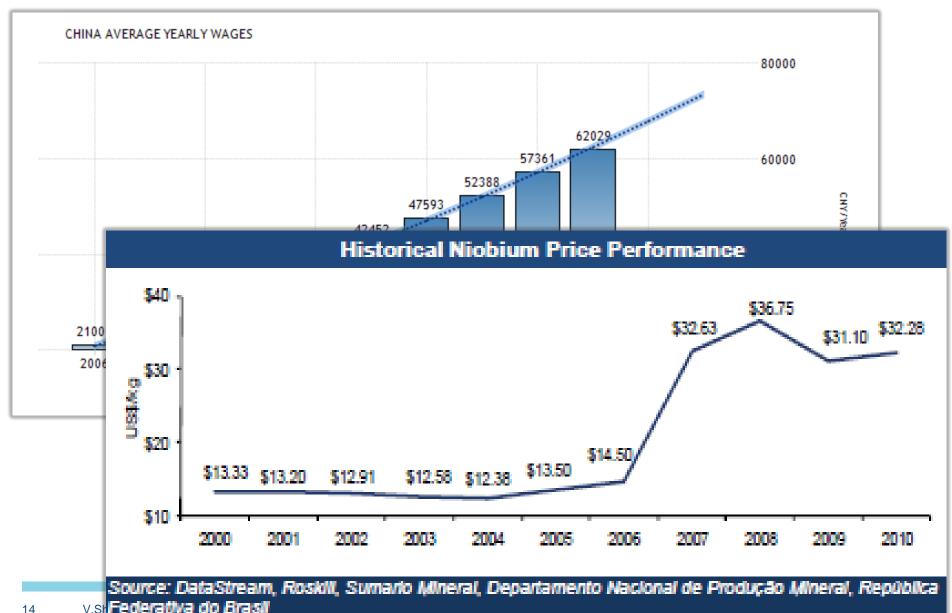
NSLSII USA

- 792 m
- 3 GeV
- 912 M\$

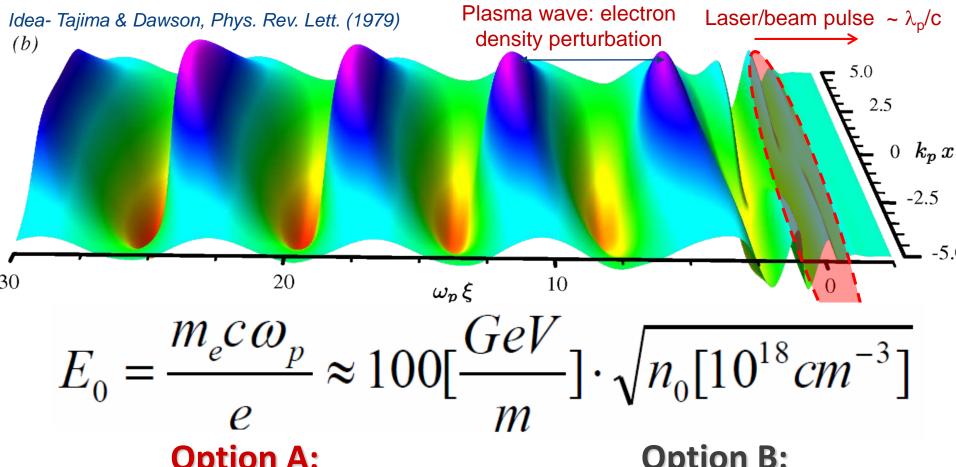
2015

Account infl'n, convert to USD and scale to sqrt(1 km):

350 M\$

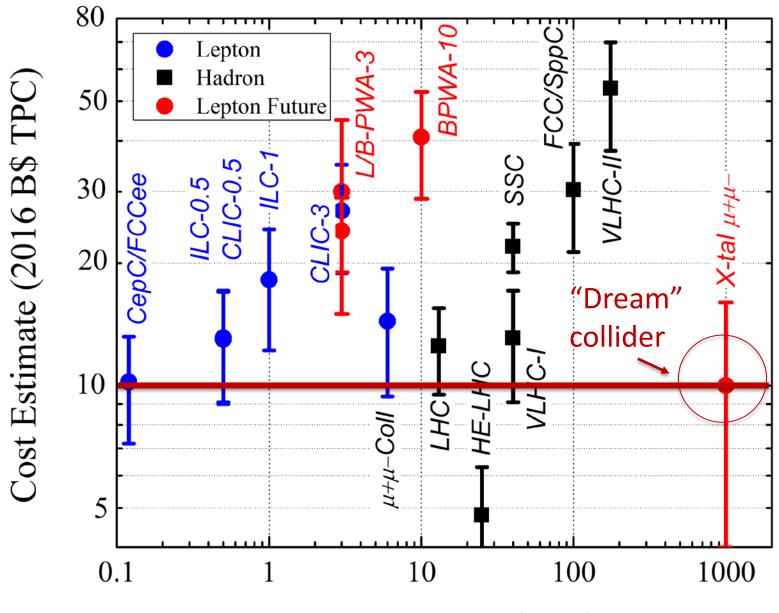

772 M\$

1040 M\$


1024 M\$

"Move to China!" - Caveats

Option 4: New Technology- Plasma

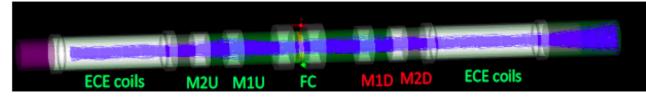

Option A:

Short intense e-/e+/p bunch Few 10¹⁶cm⁻³, **6 GV/m** over 0.3m

Option B:

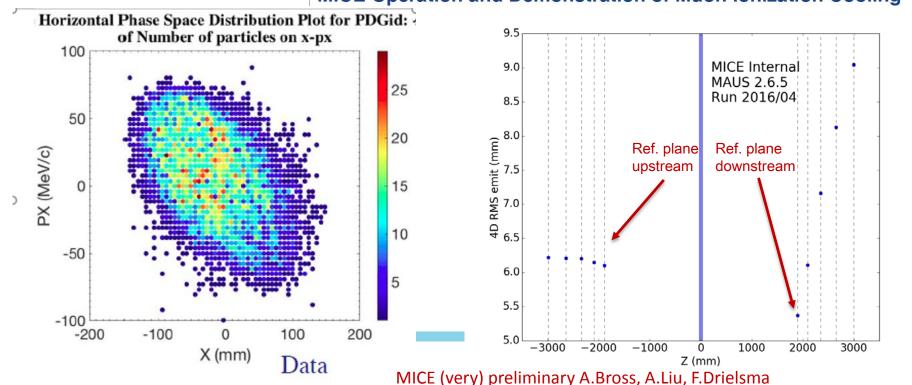
Short intense laser pulse ~10¹⁸cm⁻³, **50 GV/m** over 0.1m

First looks into "Plasma-Collider": staging kills! <Ε>~2 GV/m,ε

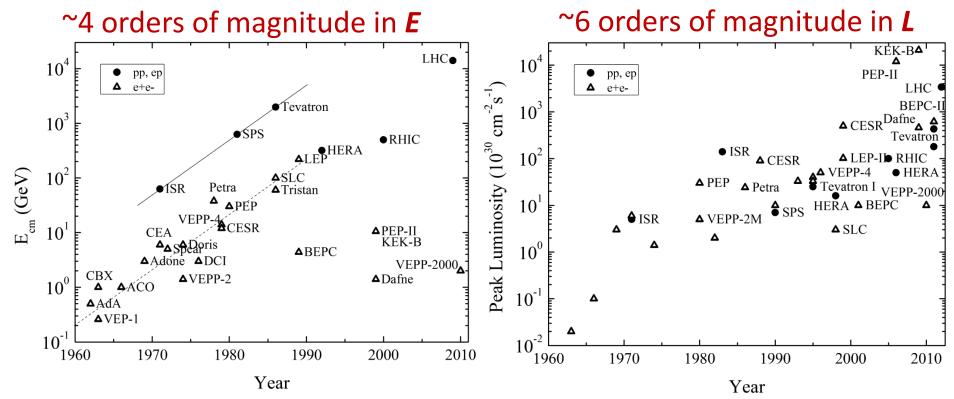

C.o.M. Energy (TeV)

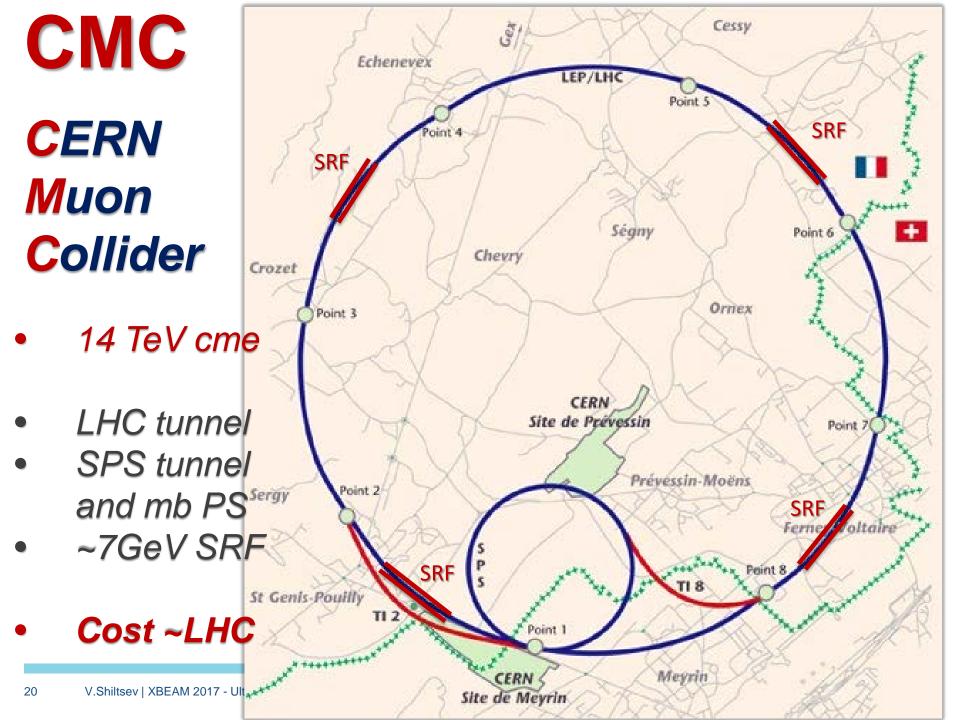
Option 5: $\mu+\mu$ - Collider x5-10 more E_{cm} for same E_{beam}

- Muons are particles for the far-future anyway
 - The only option for a 1000 TeV collider
 - As convincingly shown Monday
- There are opportunities even now:
 - Even with fully traditional technology MC shows much more economical design options than any e+e-, approaching LHC in terms of Energy/\$\$ and facility power/Energy
 - MICE shows that muon cooling works
 - Great savings for labs having either proton complex or big tunnels
 - Novel approaches, like shown Mon, can offer further gains... need R&D
- The past tells us that we were much more successful in improving performance than the energy

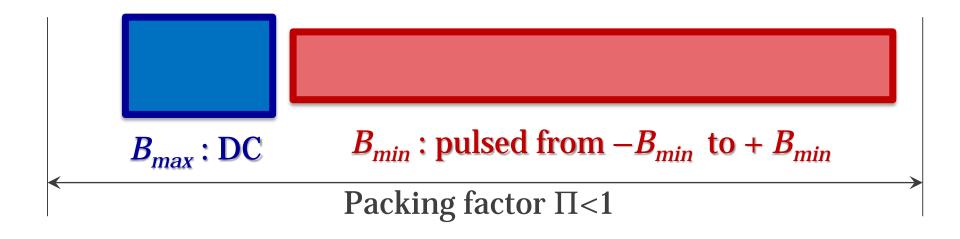

MICE

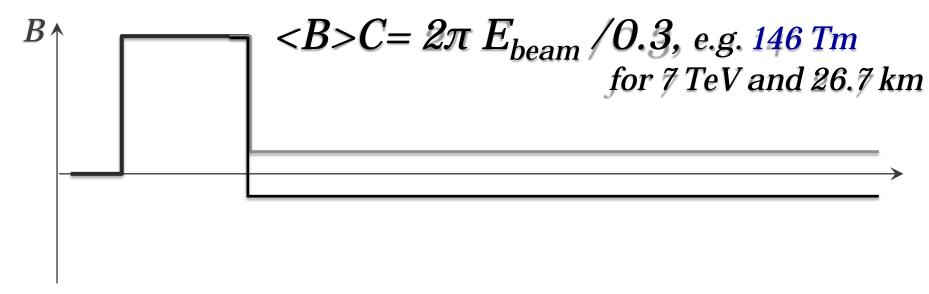
- at RAL
- 10M muon tracks
- cooling observed
 - w/o RF yet
- Re-accel'n in 2018


MICE Operation and Demonstration of Muon Ionization Cooling


Race: Energy vs Luminosity

V.Shiltsev, Physics-Uspekhi, 2012, **55**:10, 965-976


Over the 5 decades of developments of the particle colliders



The reason (of faster pace of *L*) is economical – the cost of new technological advances in acceleration is much higher than the cost of advances in performance (focusing, cooling, sources, etc)... and the latter are thus much more numerous

Assume RCS Acceleration

(Simple math)

Acceleration range:

$$R = \frac{E_{max}}{E_{min}} = \frac{B_{max}L_{SC} + B_{min}L_{pulsed}}{B_{max}L_{SC} - B_{min}L_{pulsed}}$$

• If the ratio of fields:
$$f = \frac{B_{max}}{B_{min}}$$
 then: $\frac{L_{pulsed}}{L_{SC}} = f \frac{R-1}{R+1}$

and equation for the required fields reads :

$$\frac{2\pi}{0.3}E_{max} = \langle B \rangle C = B_{max}\Pi C \frac{2R}{R(1+f)+1-f}$$

Example: 7 TeV, 26.7 km tunnel, 16T max

$$\frac{2\pi}{0.3}E_{max} = < B > C = B_{max}\Pi C \frac{2R}{R(1+f)+1-f}$$

$$146\,\mathrm{T} \times \mathrm{km} \qquad 26.7\mathrm{km} \quad 16\mathrm{T} \quad 0.85 \qquad 0.4 = 1/2.5$$

$$\mathrm{then}: \qquad f = \frac{B_{max}}{B_{min}} \quad R = \frac{f-1}{f-4} \quad B_{min} \qquad E_{inj}$$

$$4.2 \qquad 16 \qquad 3.8\mathrm{T} \qquad 0.45\mathrm{TeV}$$

$$4.5 \qquad 7 \qquad 3.5\mathrm{T} \qquad 1\mathrm{TeV}$$

$$5 \qquad 4 \qquad 3.2\mathrm{T} \qquad 4\mathrm{TeV}$$

$$5 \qquad 4 \qquad 3.2\mathrm{T} \qquad 4\mathrm{TeV}$$

$$8 \qquad 1.75 \qquad 2.0\mathrm{T} \qquad 9.1\mathrm{TeV} \quad \mathrm{lab}$$

Example 2: 1 TeV, 6.9km tunnel, 16T max

$$\frac{2\pi}{0.3}E_{max} = \langle B \rangle C = B_{max}\Pi C \frac{2R}{R(1+f)+1-f}$$
20.9 T × km
6.9km 16T 0.9
0.21=1/5

then:	$f = \frac{B_{max}}{B_{min}}$	$R = \frac{f - 1}{f - 9}$	B_{min}	E_{inj}	
	10	9	1.6T	110 GeV	
	9.5	17	1.7T	60 GeV	

Example 3: 60GeV,0.7km tunnel,16T max

$$\frac{2\pi}{0.3}E_{max} = \langle B \rangle C = B_{max}\Pi C \frac{2R}{R(1+f)+1-f}$$
1.26 T × km
0.7km
16T
0.9
0.125=1/8

then:

$f = \frac{B_{max}}{B_{min}}$	$R = \frac{f - 1}{f - 15}$	B_{min}	E_{inj}
16	15	1.0T	5 GeV

To sum up: 14 TeV CMC

• One can build a 14 TeV cme $\mu + \mu$ - collider at CERN if:

- Re-use tunnels 26.7km LHC, 6.9km SPS, 0.7km PS
- 16 T SC magnets (DC), need ~5 km
- Pulsed ±3.5 T magnets, with ramp ~100ms, need ~20km
- Pulsed ±2 T magnets, with ramp ~10ms, need ~6km
- Pulsed ±1 T magnet, with ramp ~1ms, need ~1km

• The $\alpha\beta\gamma$ -model predicts TPC ~12B\$ ±4

- 5B\$ SC magnets, 3B\$ NC magnets, 2B\$ SRF, 2B\$ 100MW power infrst.
- cost of LHC; ~6B\$ in European accounting

• "Free cookie" – if one has 24 T SC magnets

- Either 4x luminosity can be achieved with collider in SPC tunnel that requires 7 km of 24T magnets
- Or 7 TeV cme in the LHC tunnel with just 3T pulsed magnets

Summary

Future energy frontier colliders are expensive:

- $\alpha\beta\gamma$ -model approx. well NC/SC Magnets and RF
- Significant fraction is in civil and site power infrastructure

Possible options/preemptive measures:

- Re-use existing (injectors, tunnels, etc)
 - Though saves a lot, works only at few places (big existing labs)
- 2. Develop traditional technology to lower cost by a factor (SC mag, SRF)
 - Decade(s) of R&D, ongoing... need to be more aggressive
- 3. "Move to China!" or some other place to save big factor
 - The advantage might disappear in 10-15 years from now
- 4. Wait till new acceleration technology matures (plasma) and lower cost
 - Progress over past 2 decades impressive but no sign of cost feasibility yet... R&D
- 5. "Get more with same energy" = $\mu + \mu$ (e.g., 14 TeV CERN MC)
 - Need to develop challenging pulsed magnets (NC? SC?), other smart ideas
 - But the switch to muons is inevitable in a long run...

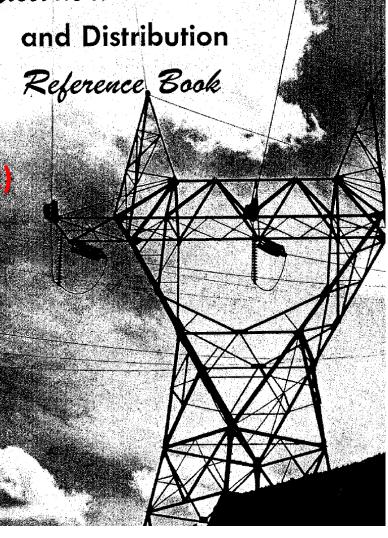
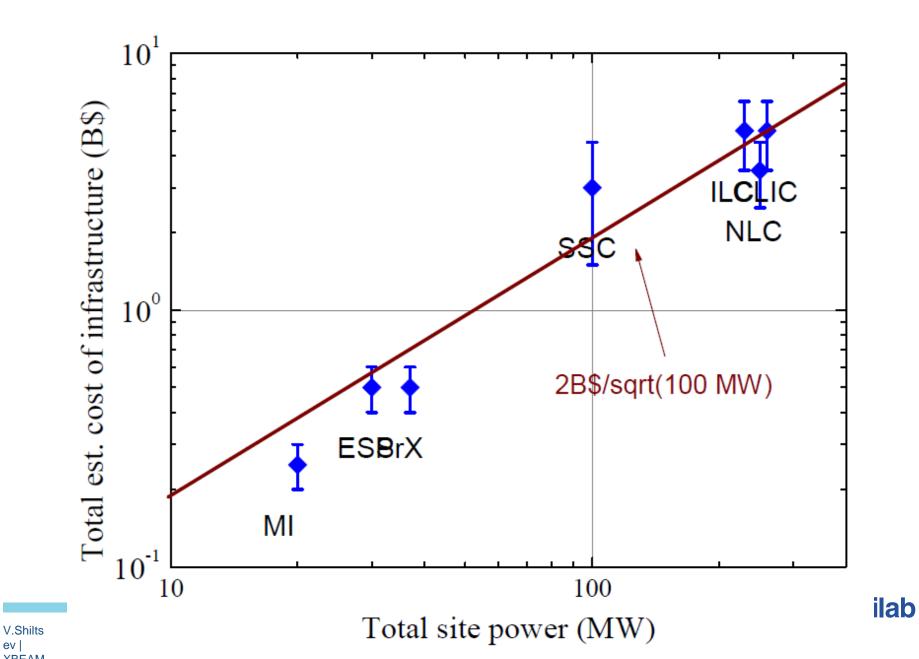
Thank You for Your Attention!

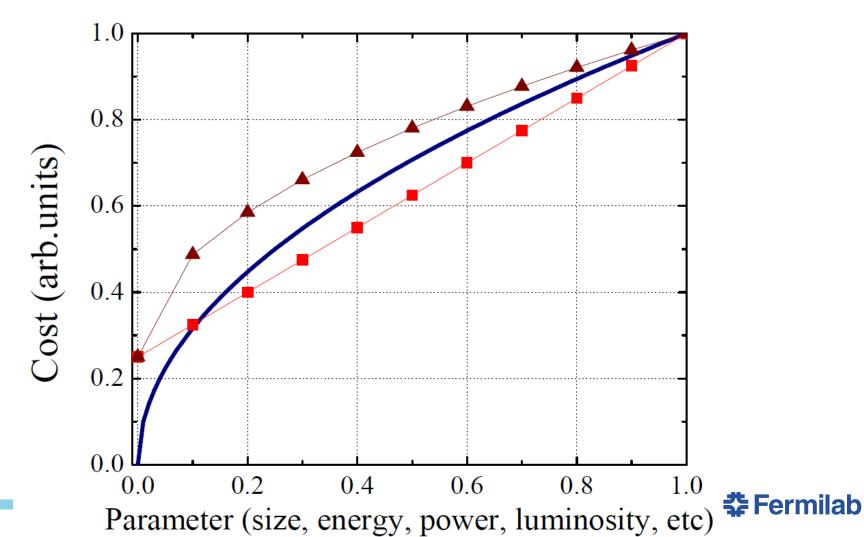
Back up slides

Cost ~ Size^3

From basic theor Electrical Transmission
Power (MVA) ~ Size^4
and Distribution

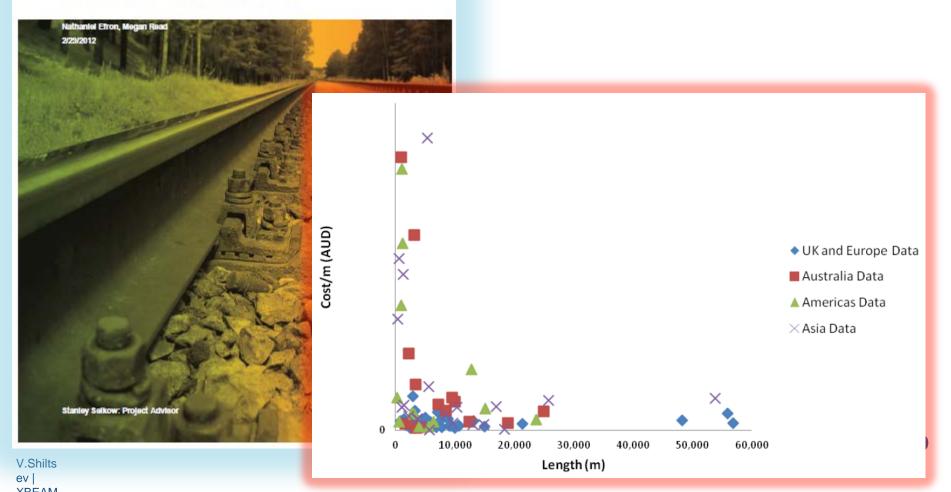
So , Cost ~ (Power)^(3/4)

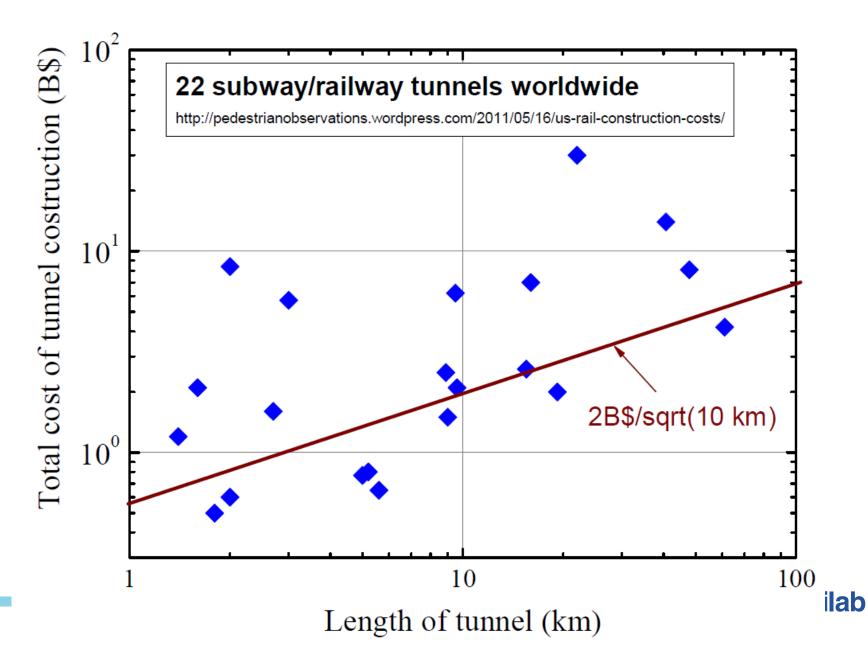





Fig. 48—Curve for estimating prices of oil-immersed, 60-cycle, two-winding, type OA power transformers.

ev |

 Recurring theme: "zero-cost" + some growing function can be reasonably well described by sqrt(Parameter)




Analysing International Tunnel Costs

An Interactive Qualifying Project

Cost of Tunnel

Some 100 tunnels world wide

More on Tunneling cost

Do not expect Cost ~ (L × D²) = meter^3 !

Tunnelling and Underground Space Technology 33 (2013) 22-33

Planning level tunnel cost estimation based on statistical analysis of historical data

Data on 270 tunnels world wide

Jamal Rostami ^a, Mahmoud Sepehrmanesh ^b, Ehsan Alavi Gharahbagh ^{a,*}, Navid Mojtabai ^c

Table 9
Summary of unit cost and multi-variable regression analyses.

Application	Type of excavation	Multi-variable regression equation
Highway	Conventional	Cost (M\$) = $10^{(1.51 + 1.02 \log (L) + 0.374 \log (D))}$
Waste water	Conventional	Cost (M\$) = $10^{(-0.391 + 1.63 \log (0 + 1.11 \log of (D)))}$
Waste water	Mixed	Cost (M\$) = $10^{(1.03 + 0.761 \log (L) + 0.804 \log (D))}$
Waste water	Hard rock mechanized	Cost (M\$) = $10^{(0.319 + 0.901 \log (L) + 1.35 \log (D))}$
Waste water	Soft ground mechanized	Cost (M\$) = $10^{(0.377 + 1.02 \log (L) + 1.53 \log (D))}$
Waste water	Micro-tunneling	Cost (M\$) = $10^{(0.553 + 0.975 \log(L) + 0.374 \log(D))}$
Subway	Conventional	Cost (M\$) = $10^{(1.10 + 0.933 \log (L) + 0.614 \log (D))}$
Subway	Mixed	Cost (M\$) = $10^{(1.47 + 0.760 \log (L) + 0.527\log (D))}$
Subway	Hard rock mechanized	Cost (M\$) = -97.2 + 11.7L + 28.3D
Subway	Soft ground mechanized	Cost (M\$) = $10^{(1.23 + 1.05 \log (L) + 0.636 \log (D))}$
Water	Conventional	Cost (M\$) = $10^{(0.917 + 0.669 \log (L) + 0.658 \log (D))}$
Water	Mixed	Cost (M\$) = $10^{(1.94 + 0.414 \log (L) + 0.053 \log (D))}$
Water	Hard rock mechanized	Cost (M\$) = $10^{(0.553 + 0.866 \log (L) + 1.23 \log (D))}$
Water	Soft ground mechanized	Cost (M\$) = $10^{(1.07 + 0.725 \log (L) + 1.02 \log (D))}$

L: Length of the tunnel (km).

Cost $\sim L^{\wedge}(0.4-1) D^{\wedge}(0.6-1.5)$

Tunnelling and **Underground Space** Technology

D: Equivalent diameter (m).

TUPMY001

Proceedings of IPAC2016, Busan, Korea

VERY LOW EMITTANCE MUON BEAM USING POSITRON BEAM ON TARGET

M. Antonelli, M. Biagini, M. Boscolo, A. Variola INFN/LNF, Frascati, Italy P. Raimondi, ESRF Grenoble, France G. Cavoto INFN Roma, Italy E. Bagli INFN Ferrara, Italy

	positron source	proton source
μ rate[Hz]	$9 \cdot 10^{10}$	$2 \cdot 10^{13}$
μ /bunch	$4.5 \cdot 10^{7}$	$2 \cdot 10^{12}$
normalised ϵ [μ m-mrad]	40	25000

The muon collider ring would have bunches of μ^+ and μ^- with energy of 22 GeV with $4.5 \cdot 10^7$ muon particles, emittance 0.19 μ m-mrad, and beam energy spread of 9%, produced with a spacing of 500 μ s (2 KHz rate). Bunches

Promising values of luminosities can be obtained with these parameters, being in the range of $L \approx 10^{34} \text{ cm}^{-2} \text{s}^{-1}$.

rmilab