Fermilab Image: Constant of the second state Office of Science On Cost of Future Colliders and Options/Preemptive Measures

Vladimir Shiltsev

Fermilab *, Batavia, IL , USA Accelerator Physics Center February 15, 2016

Four "Feasible" Technologies

... in addition to "traditional" technologies of tunneling, electric power and site infrastructures, etc ...

Analysis:

2014 JINST 9 T07002

17 "Data Points" - Costs of Big Accelerators:

- Actually built:
 - RHIC, MI, SNS, LHC
- Under construction: – XFEL, FAIR, ESS
- Not built but costed:
 - SSC, VLHC, NLC
 - ILC, TESLA, CLIC,
 Project-X, Beta-Beam,
 SPL, v-Factory

Wide range :

- 4 orders in *E*nergy, >1 order in *P*ower, >2 orders in *L*ength
- Almost 2 orders in cost
 - (normalized to US TPC)

		Cost (B\$)	Energy	Accelerator	Comments	Length	Site	TPC	
		Year		technology			power	range	.<
			(TeV)			(km)	(MW)	(Y14B\$)	<u>S</u>
	SSC	11.8 B\$	40	SC Mag	Estimates changed	87	~ 100	19–25	l ≓
4		(1993)			many times [6–8]				BS:
	FNAL MI	260M\$	0.12	NC Mag	"old rules", no OH,	3.3	~ 20	0.4-0.54	,×
		(1994)			existing injector [9]				⊳
	RHIC	660M\$	0.5	SC Mag	Tunnel, some	3.8	~ 40	0.8–1.2	σ
		(1999)			infrastructure, injector				he
					re-used [10]				Š
	TESLA	3.14 B€	0.5	SC RF	"European	39	~ 130	11–14	N N
		(2000)			accounting" [11]				ne
	VLHC-I	4.1 B\$	40	SC Mag	"European	233	~ 60	10–18	N
		(2001)			accounting", existing				ĕ
					injector [12]				<u>ğ</u>
	NLC	$\sim 7.5\mathrm{B}\$$	1	NC RF	$\sim 6\mathrm{B}\$$ for 0.5 TeV	30	250	9–15	8
		(2001)			collider, [13]				<u></u>
	SNS	1.4 B\$	0.001	SC RF	[14]	0.4	20	1.6–1.7	8
		(2006)							st
	LHC	6.5 BCHF	14	SC Mag	collider only —	27	~ 40	7–11	В
		(2009)			existing injector, tunnel				8
					& infrstr., no OH,				de
					R&D [15]				T T
	CLIC	7.4–8.3B	0.5	NC RF	"European	18	250	12–18	9
		CHF(2012)			accounting" [16]				Ľ.
	Project X	1.5 B\$	0.008	SC RF	[17]	0.4	37	1.2 - 1.8	gh
		(2009)							0
	XFEL	1.2 B€	0.014	SC RF	in 2005 prices,	3.4	~ 10	2.9–4.0	Ĩ
		(2012)			"European				<u>Sle</u>
					accounting" [18]				УG
	NuFactory	4.7–6.5 B€	0.012	NC RF	Mixed accounting,	6	~ 90	7–11	D
		(2012)			w. contingency [19]				h
	Beta-	1.4–2.3 B €	0.1	SC RF	Mixed accounting,	9.5	~ 30	3.7–5.4	lic
١	Beam	(2012)			w. contingency [19]				e
	SPL	1.2–1.6 B€	0.005	SC RF	Mixed accounting,	0.6	~ 70	2.6-4.6	a
		(2012)			w. contingency [19]				O
	FAIR	1.2 B€	0.00308	SC Mag	"European	~ 3	~ 30	1.8–3.0	e e
		(2012)			accounting" [20], 6				E.
					rings, existing injector				đ
	ILC	7.8 B\$	0.5	SC RF	"European	34	230	13–19	ST ST
		(2013)			accounting" [21]				
	ESS	1.84 B€	0.0025	SC RF	"European	0.4	37	2.5-3.8	1
		(2013)			accounting" [22, 23]				I

αβγ - Cost Estimate Model:

Cost(TPC) = $\alpha L^{1/2} + \beta E^{1/2} + \gamma P^{1/2}$

- a) $\pm 33\%$ estimate, for a "green field" accelerators
- **b) "US-Accounting" = TPC !** (~ 2 × European Accounting)
- c) Coefficients (units: 10 km for L, 1 TeV for E, 100 MW for P)
 - α≈ 2B\$/sqrt(L/10 km)
 - β≈ 10B\$/sqrt(*E*/TeV) for SC/NC RF
 - β≈ 2B\$ /sqrt(*E*/TeV) for SC magnets
 - β≈ 1B\$ /sqrt(*E*/TeV) for NC magnets

γ≈ 2B\$/sqrt(*P*/100 MW)

USE AT YOUR OWN RISK!

PERSON OF THE PROPERTY OF THE

Illustrations

Comment:

Sqrt-functions are quite accurate over wide range because such dependence well approximates the *"initial cost"* – *effect* :

Fig. 9.5. Variation of costs of power plant versus its capacity.

Take LHC as an Example:

αβγ – Model:

- 40 km of tunnels
- 14 TeV c.o.m SC magnets
- ~150 MW of site power

TOTAL PROJECT COST : 14B\$ ± 4.5B\$

• CERN LHC Factbook (2009):

- 6.5 BCHF, incl. **5 BCHF** for accelerator (European Accounting)
- x 2 to US TPC \rightarrow **10 BCHF=10B\$**
- Cost of existing injector complex ~30-40%
 3-4 B\$

TPC : ~**13-14B\$**

(of which CERN paid 10 over ~8 yrs)

- $2\sqrt{40/10} = 4$ $2\sqrt{14} = 7.5$
- $2\sqrt{150/100} = 2.5$
 - CERN LHC the guide

Important Note: Two out of Three Factors in the Model are Independent from Our R&D Efforts – Tunneling, Power Infrastructure

Do not expect Cost ~ $(L \times D^2) = \text{meter}^3 !$

Data on 270 tunnels world wide

Tunnelling and Underground Space Technology

responsing Trendhiess Technology Research

- notegenetit
 planting
 tegenetic
 margin
 margin
 sometics
 specific
 specific
 - maintenance

Tunnelling and Underground Space Technology 33 (2013) 22–33

Cost ~ L^(0.4-1) D^(0.6-1.5)

9

Option 2 : Develop Technology to Lower Cost

100 TeV pp : Qualitative Cost Dependencies

rmilab

Option 3: "Move to China !"

Source: U.S. Bureau of Labor Statistics, International Labor Comparisons.

SSRF *China*

Spring-8 Dia Japan

Diamond NSLSII UK USA

- 432 m• 1436 m• 562 m• 792 m• 3.5 GeV• 8 GeV• 3 GeV• 3 GeV
 - 1.2B RMB
 11 BY
 383 M £
 912 M\$

 2007
 1997
 2007
 2015

Account infl'n, convert to USD and scale to sqrt(1 km):

350 M\$

772 M\$ 1040 M\$

5 1024 M\$

"Move to China !" - Caveats

Cost Estimate (2016 B\$ TPC)

Option 5: $\mu + \mu - Collider$ **x5-10 more** E_{cm} for same E_{beam}

- Muons are particles for the far-future anyway
 - The only option for a 1000 TeV collider
 - As convincingly shown Monday
- There are opportunities even now:
 - Even with fully traditional technology MC shows much more economical design options than any e+e-, approaching LHC in terms of Energy/\$\$ and facility power/Energy
 - MICE shows that muon cooling works
 - Great savings for labs having either proton complex or big tunnels
 - Novel approaches, like shown Mon, can offer further gains... need R&D
- The past tells us that we were much more successful in improving performance than the energy

MICE

- at RAL
- 10M muon tracks
- cooling observed
 w/o RF yet
- Re-accel'n in 2018

MICE Operation and Demonstration of Muon Ionization Cooling

Race : Energy vs Luminosity

V.Shiltsev, Physics–Uspekhi, 2012, 55:10, 965–976

Over the 5 decades of developments of the particle colliders

The reason (of faster pace of L) is economical – the cost of new technological advances in acceleration is much higher than the cost of advances in performance (focusing, cooling, sources, etc)... and the latter are thus much more numerous

Assume RCS Acceleration

🚰 Fermilab

(Simple math)

• Acceleration range:

$$R = \frac{E_{max}}{E_{min}} = \frac{B_{max}L_{SC} + B_{min}L_{pulsed}}{B_{max}L_{SC} - B_{min}L_{pulsed}}$$

• If the ratio of fields :
$$f = \frac{B_{max}}{B_{min}}$$
 then : $\frac{L_{pulsed}}{L_{SC}} = f \frac{R-1}{R+1}$

• and equation for the required fields reads :

$$\frac{2\pi}{0.3}E_{max} = \langle B \rangle C = B_{max}\Pi C \frac{2R}{R(1+f)+1-f}$$

Example: 7 TeV, 26.7 km tunnel, 16T max

Example 2: 1 TeV, 6.9km tunnel, 16T max

$$\frac{2\pi}{0.3} E_{max} = \langle B \rangle C = B_{max} \Pi C \frac{2R}{R(1+f) + 1 - f}$$

20.9 T × km 6.9km 16T 0.9 0.21=1/5

then :	$f = \frac{B_{max}}{B_{min}}$	$R = \frac{f-1}{f-9}$	B _{min}	E _{inj}	
	10	9	1.6T	110 GeV	
	9.5	17	1.7T	60 GeV	

Example 3: 60GeV,0.7km tunnel,16T max

$$\frac{2\pi}{0.3} E_{max} = \langle B \rangle C = B_{max} \Pi C \frac{2R}{R(1+f) + 1 - f}$$

1.26 T × km 0.7km 16T 0.9 0.125=1/8

then: $f = \frac{B_{max}}{B_{min}} \quad R = \frac{f-1}{f-15} \quad B_{min} \quad E_{inj}$ 16
15
1.0T
5 GeV

To sum up: 14 TeV CMC

• One can build a 14 TeV cme $\mu + \mu$ - collider at CERN if:

- Re-use tunnels 26.7km LHC, 6.9km SPS, 0.7km PS
- 16 T SC magnets (DC), need ~5 km
- Pulsed ±3.5 T magnets, with ramp ~100ms, need ~20km
- Pulsed ±2 T magnets, with ramp ~10ms, need ~6km
- Pulsed ±1 T magnet, with ramp ~1ms, need ~1km

The αβγ-model predicts TPC ~12B\$ ±4

- 5B\$ SC magnets, 3B\$ NC magnets, 2B\$ SRF, 2B\$ 100MW power infrst.
- ~ cost of LHC; ~6B\$ in European accounting

"Free cookie" – if one has 24 T SC magnets

- Either 4x luminosity can be achieved with collider in SPC tunnel that requires 7 km of 24T magnets
- Or 7 TeV cme in the LHC tunnel with just 3T pulsed magnets

Summary

Future energy frontier colliders are expensive:

- $\alpha\beta\gamma$ -model approx. well NC/SC Magnets and RF
- Significant fraction is in civil and site power infrastructure

Possible options/preemptive measures:

- 1. Re-use existing (injectors, tunnels, etc)
 - Though saves a lot, works only at few places (big existing labs)
- 2. Develop traditional technology to lower cost by a factor (SC mag, SRF)
 - Decade(s) of R&D, ongoing... need to be more aggressive
- 3. "Move to China!" or some other place to save big factor
 - The advantage might disappear in 10-15 years from now
- 4. Wait till new acceleration technology matures (plasma) and lower cost
 - Progress over past 2 decades impressive but no sign of cost feasibility yet... R&D
- 5. "Get more with same energy" = $\mu + \mu$ (e.g., 14 TeV CERN MC)
 - Need to develop challenging pulsed magnets (NC? SC?), other smart ideas
 - But the switch to muons is inevitable in a long run...

Thank You for Your Attention!

Back up slides

VDEAM

V.Shilts ev |

32 Functional dependence

 Recurring theme: "zero-cost" + some growing function can be reasonably well described by sqrt(Parameter)

V.Shilts ev | WORCESTER POLYTECHNIC INSTITUTE

Nathaniel Efron, Megan Read

2/29/2012

Analysing International Tunnel Costs

An Interactive Qualifying Project

Cost of Tunnel

• Some 100 tunnels world wide

V.Shilts ev |

More on Tunneling cost

• Do not expect Cost ~ $(L \times D^2)$ = meter^3 !

Tunnelling and Underground Space Technology 33 (2013) 22–33

Planning level tunnel cost estimation based on statistical analysis of historical data

Jamal Rostami^a, Mahmoud Sepehrmanesh^b, Ehsan Alavi Gharahbagh^{a,*}, Navid Mojtabai^c

Table 9

Summary of unit cost and multi-variable regression analyses.

Application	Type of excavation	Multi-variable regression equation	
Highway	Conventional	$Cost (M\$) = 10^{(1.51 + 1.02 log (L) + 0.374 log (D))}$	
Waste water	Conventional	Cost (M\$) = 10^(-0.391 + 1.63 log (0 + 1.11 log of (D))	
Waste water	Mixed	$Cost (M\$) = 10^{(1.03 + 0.761 log (L) + 0.804 log (D))}$	
Waste water	Hard rock mechanized	$Cost (M\$) = 10^{(0.319 + 0.901 log (L) + 1.35 log (D))}$	
Waste water	Soft ground mechanized	$Cost (M\$) = 10^{(0.377 + 1.02 log (L) + 1.53 log (D))}$	
Waste water	Micro-tunneling	$Cost (M\$) = 10^{(0.553 + 0.975 log (L) + 0.374 log (D))}$	
Subway	Conventional	$Cost (M\$) = 10^{(1.10 + 0.933 \log (L) + 0.614 \log (D))}$	
Subway	Mixed	$Cost (M\$) = 10^{(1.47 + 0.760 log (L) + 0.527log (D))}$	
Subway	Hard rock mechanized	Cost (M\$) = -97.2 + 11.7L + 28.3D	
Subway	Soft ground mechanized	$Cost (M\$) = 10^{(1.23 + 1.05 log (L) + 0.636 log (D))}$	
Water	Conventional	$Cost (M\$) = 10^{(0.917 + 0.669 log (L) + 0.658 log (D))}$	
Water	Mixed	$Cost (M\$) = 10^{(1.94 + 0.414 log (L) + 0.053 log (D))}$	B a
Water	Hard rock mechanized	$Cost (M\$) = 10^{(0.553 + 0.866 \log (L) + 1.23 \log (D))}$	
Water	Soft ground mechanized	$Cost (M\$) = 10^{(1.07 + 0.725 log (L) + 1.02 log (D))}$	10

L: Length of the tunnel (km).

D: Equivalent diameter (m).

Cost ~ *L*^(0.4-1) *D*^(0.6-1.5)

Data on 270 tunnels world wide

Tunnelling and Underground Space Technology

receptating Trendless Technology Research

Theory Proc. Surgers (197) Suppose Training (S.S.

- · proceeding
- interprint topped
- ming
- -
-
-
- · operation
- minimum

www.adamiter.com

Infree Locality

TUPMY001

Proceedings of IPAC2016, Busan, Korea

VERY LOW EMITTANCE MUON BEAM USING POSITRON BEAM ON TARGET

M. Antonelli, M. Biagini, M. Boscolo, A. Variola INFN/LNF, Frascati, Italy P. Raimondi, ESRF Grenoble, France G. Cavoto INFN Roma, Italy E. Bagli INFN Ferrara, Italy

The muon collider ring would have bunches of μ^+ and μ^- with energy of 22 GeV with $4.5 \cdot 10^7$ muon particles, emittance 0.19 μ m-mrad, and beam energy spread of 9%, produced with a spacing of 500 μ s (2 KHz rate). Bunches

Promising values of luminosities can be obtained with these parameters, being in the range of $L \approx 10^{34} \text{ cm}^{-2} \text{s}^{-1}$.

V.Shiltsev | XBEAM 2017 - Ultimate Colliders