LPNHE-FBK-INFN thin edgeless n-on-p pixel sensors: testbeam results and future plans

A. Ducourthial¹, A. Bagolini², M. Bomben¹, M. Boscardin², L. Bosisio³, G. Calderini¹, Louis D'Eramo¹, G. Giacomini^{2,4}, G. Marchiori¹, N. Zorzi²

1 Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), 75005 Paris, France

2 Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), I-38123 Povo di Trento (TN), Italy

3 Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy

4 Brookhaven National Laboratory, Instrumentation Division 535B, Upton, NY - USA

ATLAS EXPERIMENT

12th Trento Workshop - February 20, 2017

- 1. Introduction: ATLAS Tracker Upgrade
- 2. LPNHE-FBK-INFN sensors
- 3. Production 1: Active edge sensors
- 4. Production 2: Thin sensors
- 5. Conclusions and Future plans

Introduction: ATLAS Tracker Upgrade

ATLAS Tracker

- 3 subdetectors: Pixels, SCT, TRT
- Pixel detectors composed of now 4 barrel layers (IBL)
- η acceptance: -2.5 <η < 2.5</p>
- Excellent performances in terms of spatial resolution and hit efficiency, but
- Pixel radiation hardness between 1 and 5 ×10¹⁵n_{eq}/cm²

ATLAS Upgrade

ATLAS data taking phase in HL LHC conditions (start in early 2026):

- ▶ Peak luminosity of $L_{inst} \simeq 7.5 \times 10^{34} cm^{-2} s^{-1}$
- 200 inelastic pp collisons per bunch crossing
- By the end of 2035, ATLAS will collect 3000 fb^{-1} (4000 fb^{-1} ?)
- Fluence inner tracker 2 \times 10¹⁶ n_{eq}/cm^2 (4 times IBL fluence)

ATLAS Inner Tracker Upgrade Layout

Inclined Layout

Pixel options:

- ▶ 3D silicon pixels
- Planar silicon pixels
- CMOS pixels

TDR due for end of 2017 * All silicon tracker * 10 m^2 of pixels more than 600 Millions electronical channels * 200 m^2 of strips

ITK major challenges:

- Radiation hardness: Retain a 97% efficient with a fluence up to $2 \times 10^{16} neq/cm^2$
 - * Thinner sensors to fight charge trapping
 - * Better understanding of radiations impact on silicon sensors
 - \ast LPNHE 100 μm thick sensors irradiated at 3 \times 10¹⁵ n_{eq}/cm^2

Pile up compliance:

* granularity (50 μ m × 50 μ m or 25 μ m × 100 μ m pitch instead of 250 μ m × 50 μ m)

* new chip RD53 50 imes 50 μm to deal with high data rate at HL-LHC

Increase the geometrical acceptance

- * Instrument at high eta (for example"Alpine sensors")
- ∗ Reduction of dead area ⇒LPNHE Active edge sensors

ITK - Edgeless sensors

Reduction of dead area

LPNHE-FBK-INFN sensors

Production 1: Active edge sensors

FBK-LPNHE production:

- 9 sensors compatible with actual ATLAS IBL read-out chip (FEI4b)
- n-on-p devices
- > pixel pitch: 50 μm by 250 μm
- thickness: 200 μm
- support wafer: 500 μm thick
- Biased during test thanks to temporary metal

Active edge production:

- Deep Reactive Ion Etching
- > LPNHE5: 100 μm from last pixel, 0 GR
- LPNHE7: 100 μm from last pixel, 2 GR innermost GR connected, outermost GR floating

Development of Edgeless n-on-p Planar Pixel Sensors for future ATLAS Upgrades, M Bomben et al, Nucl. Instr. and Meth. A 2013:712:41-47

Production 2: Thin sensors

FBK-INFN-LPNHE production: Thin Sensors: W80 & W30

- 6 inches SiSi wafers
- n-on-p devices
- thickness: 100 μm
- unirradiated (W30) and irradiated (W80) at a fluence of 3 × 10¹⁵n_{eq}/cm²

Production 3 (Soon to be delivered):

- ▶ Thin Active edge sensors (thickness: 100 μ m, 50/75 μ m pixel to trench, 0/1 GRs)
- ▶ Alpine sensors, RD53 compatible sensors, HGTD pad

For more details, see presentation of Sabina Ronchin

* March 2015: DESY with 4GeV electrons LPNHE5
* July 2015: CERN SPS 120 Gev pions LPNHE5
* May 2016: CERN SPS LPNHE7, W80 unirradiated

* August 2016: CERN SPS LPNHE7, W30 unirradiated

* October 2016: CERN SPS LPNHE7, W80 irradiated

Reconstruction and analysis :

- ▶ Global Hit Efficiency
- ▶ In Pixel Hit Efficiency: Efficiency homogeneity inside a pixel cell
- Edge area Hit Efficiency
- Spatial resolution: Residuals study
- Radiation hardness \Rightarrow Tests on irradiated sensors

Production 1: Active edge sensors

GLOBAL HIT EFFICIENCY

Efficiency higher than 97.5% for LPNHE 5 and LPNHE7 (0/2 GRs)

IN PIXEL EFFICIENCY

Temporary metal line to bias sensors before bump bonding: No permanent bias structures results in **uniform hit efficiency**

Edge Efficiency

LPNHE 5 (0 GR):

- Higher threshold
 1600e
- Multiple scattering DESY

LPNHE 7 (2GR)

Efficiency higher than 50% up to 92 μm from the last pixel

Presence of GRs doesn't seem to impact too severely on the hit-efficiency

Edge Efficiency - Comparison with TCAD simulation

- Charge is not collected and reemitted by GRs apart from few µm below the GR
- Simulation TCAD supports the hypothesis
- Uninstrumented area is no longer dead !

EDGE EFFICIENCY - LATERAL DEPLETION

- Lateral depletion completed around 40V
- Few events yield non zero efficiency and ToT up to 20µm beyond the edge; this is compatible with the spatial resolution of one pixel cell clusters

RESIDUALS

Spatial resolution in the short direction $RMS_{Y}(all) = 11.5 \mu m$

 $RMS_{ResY}(Cl1) = 14\mu m$ compatible with the expected digital resolution Pointing resolution of the telescope, $RMS_{gauss}(Cl1) = 5.5\mu m$

Charge sharing region, obtained as $RMS_{coregauss}(Cl2) = 7.8 \mu m$

Production 2: Thin sensors

Irradiated 100 μm thick sensor tested in October testbeam

THIN SENSORS EFFICIENCY

- Fluence $3 \times 10^{15} n_{eq}/cm^2$
- Almost full efficiency recovered at 600V
- ► For threshold=1200e and 6ToT@6ke Hit efficiency ~ 92%
- For threshold=1000e and 10ToT@5ke Hit efficiency > 97%
- To be remeasured at DESY in 3 weeks

THIN SENSORS EFFICIENCY

THIN SENSORS IN PIXEL EFFICIENCY

W80 irradiated:

Lack of efficiency at the border due to punch through structure

Conclusions and Future plans

CONCLUSIONS

- Thanks to the Active edge technology, the edge region is efficient above 97% up to 70µm from last pixel
- > Thin sensors highly efficient after irradiation
- Thanks to temporary metal no permanent biasing structures, so very homogeneous efficiency in the whole pixel cell
- Excellent performances in terms of efficiency and spatial resolution

To be tested in beam in spring 2017:

- Combination of thin and active edge sensors (production 3) soon to be delivered.
- ► W30 irradiated non uniformly with fluence peak at $4 \times 10^{15} n_{eq}/cm^2$

For Productions 2 and 3:

This work was supported by the Italian National Institute for Nuclear Physics (INFN), Projects ATLAS, CMS, RD-FASE2 (CSN1)

 Principal investigators: Marco Meschini, Gian Franco Dalla Betta, Maurizio Boscardin, Giovanni Darbo, Gabriele Giacomini, Sabina Ronchin, Alberto Messineo

and by AIDA-2020 Project EU-INFRA Proposal no. 654168.

The authors want to thank the CERN IRRAD team for helping with the irradiation of the detectors.

