Development of the SHiP Timing Detector Based on Scintillating Bars Readout by SiPMs

12th Trento Workshop on Advanced Silicon Radiation Detectors Feb. 20-22 2017, Trento, Italy

C. Betancourt¹, R. Brundler¹, A. Korzenev², P. Mermod², E. Noah², N. Serra¹, B. Storaci¹ on behalf of the SHiP collaboration

> ¹Universität Zürich ²Université de Genève

> > 22.02.2017

Motivation

- ► The Standard Model provides an explanation for many subatomic processes
- Although very successful, it fails to explain many observed phenomena
 - Dark Matter Neutrino oscillation and masses Matter/antimatter asymmetry in the universe
- ► May have a whole Hidden Sector of weakly interacting particles BSM
- $\begin{tabular}{ll} Energy Frontier \\ Heavy particles \rightarrow High energy events \\ \end{tabular}$
- Intensity Frontier Light particles → Rare events

The SHiP experiment

- The SHiP (Search for Hidden Particles) experiment is a proposed fixed target facility at the CERN SPS
- ▶ SPS proton beam:

 4×10^{13} protons per spill @ 400 GeV $\rightarrow 2 \times 10^{20}$ collisions in 5 years

- ▶ Will probe long lived exotic particles with masses below $\mathcal{O}(10)$ GeV
- Programme will include searches of very weakly interacting low-energy SUSY states as well as direct searches for Dark Matter, Sterile Neutrinos and Dark Photons
- Neutrino detector consists emulsion target with tracking in a magnetic field followed by a muon spectrometer $N_{\nu_{\tau}} \sim 10^4$
- Hidden particle detector will consist of a long evacuated decay volume with a magnetic spectrometer, calorimeters, and a muon detector located on the far end

The SHiP timing detector

- A dedicated timing detector can be used to reduce random crossing in the detector
- Combinatorial di-muon background can be reduced to an acceptable level by requiring a timing resolution of 100 ps or less
- Two options have been proposed for the timing detector plastic scintillators
 - plastic scintillators read-out by PMTs or SiPMs
 - 2. multigap resistive plate chambers
- This study focuses on the plastic scintillator option read-out by SiPMs

PMT option: Set-up

[arXiv:1610.05667]

- 10 GeV/c muon beam produced from the CERN PS (T9 beamline)
- ▶ 3 m long bar (EJ-200) readout by PMTs
- ▶ 2 reference counters used for trigger → 40 ps resolution
- Two DAQ systems are studied
 - 1. WAVECATCHER: 8 channel, hardware trigger \sim few kHz
 - 2. SAMPIC: 16 channel, self triggering \sim 150 kHz
- ► Time resolution of entire system is taken as Gaussian width of the following

$$\Delta t = \frac{t_1 + t_2 + t_3 + t_4}{4} - t_{5,6}$$

PMT option: Results

- ▶ 135 ps resolution halfway between bar (1.5 m)
- ▶ About 130 p.e./PMT when interaction is at middle of the bar
- ▶ Path length dispersion in the bar dominates time resolution at large distances
 - \rightarrow Main limiting factor for long bars
 - \rightarrow Faster electronics won't help

SiPM characterization

- SiPMs from two manufacturers:
 - Hamamatsu Photonics SensL
- ► SiPM characterized by:
 - Current-Voltage behavior Dark count rate Cross-talk probability Single photon time resolution

SiPM single photon time resolution

- Back-to-back γs from pair-annihilation in ²²Na is used as a source
- Single photon time resolution is taken as the Gaussian width in the time difference spectrum from coincidence signals
- Very good resolution ~ 100 ps is observed in 3 × 3 mm HPK SiPM

2.7 V - 1.5 photon level

SiPM+bar: Set-up

- ► Signal generated by ⁹⁰Sr source
- ► Scintillating plastic bar: EJ-200, 120 × 11 × 2.5 cm
- Read out on both ends by SiPMs / SiPM Arrays
- ► Signal sent to amplifier and readout out by 4 GHz oscilloscope

SiPM+bar: Time resolution

- ▶ ⁹⁰Sr pointed at bar center (60 cm)
- ▶ 3 × 3 mm² SiPM on either end of bar
- ▶ Initial measurements indicate time resolution of 800 ps
- $\begin{array}{l} \blacktriangleright \ \ \mbox{Assuming} \ \sigma \propto 1/\sqrt{N} \\ \sim 100 \ \mbox{ps for } 25\% \ \mbox{sensor coverage} \\ \sim 50 \ \mbox{ps for full sensor coverage} \end{array}$

MUSIC: Multiple Use SiPM Integrated Circuit

Operational Modes

- Single channel: analog or discriminated
- Up to 8 ch summation
- ► Trigger output

Performance

- Low noise
- High speed: > 500 MHz without filtering
- ► Tuneable PZ cancellation
- ▶ SPTR 100 ps
- ► Dynamic range: from < 1/5 to >2000 p.e.

Applications

- ► Cherenkov Telescopes
- High Energy Physics and nuclear detectors
- Lab test benches for SiPM characterization: flexibility

Sensor layout and connection

- ▶ Array of 8 SiPMs $(6 \times 6 \text{ or } 3 \times 3 \text{ mm}^2)$
- Investigate different manufacturers (HPK, SensL, AdvanSiD?)
- ► Connection in series or parallel
- Increasing number of channels leads to better resolution

Summary & Outlook

▶ SHiP is a proposed fixed target experiment at the CERN SPS

Tau neutrino physics Sterile neutrinos Dark Photon Dark Scalars/Dark Higgses Axion Like particles

arXiv:1504.04855 (Physics), arXiv:1504.04956 (TP)

- Exploring scintillator based option for SHiP timing detector
- Readout by SiPMs
 - $\sim 800~\text{ps}$ in bar center for $3\times 3~\text{mm}^2$ sensors
 - ightarrow 100 ps for 25% coverage, 50 ps for full coverage
- DAQ based on MUSIC board being investigated
- Optimization ongoing (series vs. parallel, small vs. large sensors)
- Finalize design by end of 2017

BACKUP

CFD optimization and electronic noise

- ▶ Scan of CFD threshold indicated an optimal value of 24%
- **•** Electronic noise at this value is $\sigma_{el} = 22$ ps for the optimal OV = 3 V

Waveforms, rise time and decay time

DCR and cross talk

Timescale and costs

Experimental signatures and sensitivities

Hidden Sector particles can be explored by coupling to Standard Model particles

- ▶ Vector Portal (e.g. Kinetically mixed dark photons, HNL)
- Scalar Portal (e.g dark scalars, dark Higgses)
- ▶ Neutrino Portal (e.g. right handed neutrinos, sterile neutrinos)

Main decay modes and backgrounds

Main decay modes of hidden particles

Models	Final states
Neutrino portal, SUSY neutralino	$\ell^{\pm}\pi^{\mp}, \ell^{\pm}K^{\mp}, \ell^{\pm}\rho^{\mp}, \rho^{\pm} ightarrow \pi^{\pm}\pi^{0}$
Vector, scalar, axion portals, SUSY sgoldstino	$\ell^{+}\ell^{-}, \pi^{+}\pi^{-}, K^{+}K^{-}$
Neutrino portal ,SUSY neutralino, axino	$\ell^+\ell^- u$
Axion portal, SUSY sgoldstino	$\gamma\gamma$
SUSY sgoldstino	$\pi^0\pi^0$

Background sources with V^0 particles

Decay modes
$\mathcal{K}_L ightarrow \pi e u, \pi \mu u, \pi^+ \pi^-, \pi^+ \pi^- \pi^0$
$\mathcal{K}_L ightarrow \pi^0 \pi^0, \pi^+, \pi^-$
$\Lambda o p \pi^-$
as above

The Target

- \blacktriangleright SHiP target is very challenging due to high average beam power \rightarrow 2.56 MW per 1 sec. spill
- Need heavy target to suppress π/Kaon decays → reduce the muon and neutrino induced backgrounds
- ► Longitudinally segmented hybrid target
 - Core of shower four interaction lengths of titanium-zirconium doped molybdenum alloy
 - ▶ Followed by six interaction lengths of pure tungsten
 - Water cooling
- Neutral particle absorber protects upstream beamline from neutrons and other neutral radiation
- ► Target embedded in cast Iron bunker

The Muon Shield

- $ightharpoonup \sim 5 imes 10^9$ muons / spill
- Muon shield needs to be as compact as possible along beamline
- Both active and passive shields being investigated
- Active shield needs B_y = 40
 Tm to bend 350 GeV muons away from the 5 m aperture of vacuum vessel
 - 1. Need to separate μ^+ from μ^-
 - 2. Bend muons further outward
- Passive shield uses dense material to slow down muons
 40 m of tungsten
- Backscatter from wall of experimental hall still lead to an unacceptably large flux of muons

The Neutrino Detector

- Downstream of muon shield is the neutrino detector
- $\nu_{ au}$ and anti- $\nu_{ au}$ interaction detected by decay of au lepton
- Detector consists of two parts
 - Neutrino Emulsion target in magnetic field
 - Muon Magnetic Spectrometer (MMS)
- Neutrino target based on Emulsion Cloud Chamber (ECC)
 - ► ECC brick Lead as passive material
 - Compact Emulsion Spectrometer (CES) sandwich of light material plates and emulsion film
- Muon Spectrometer
 - Resistive Plate Chambers (RPC)
 - Drift Tube Tracker (DTT)

The Vacuum Vessel

- Neutrino and muon interactions suppressed by 10^{-6} bar vacuum vessel \rightarrow Vessel containing a helium filled ballon also under consideration, physics impact still under investigation
- ▶ Elliptical structure used to reject large muon flux entering the vessel horizontally by the active muon shield while maximizing geometrical acceptance
- Vessel is double walled structure → space filled with liquid scintillator that acts as a high efficiency background event tagger
- Charged particles passing through the background tagger is read out with photo-sensors
- Background tagger also offers possibility to decide offline if particles in tracker and calorimeter are entering from outside

The Spectrometer Tracker and Magnet

- Spectrometer used to reconstruct tracks from hidden particle decay products while rejecting backgrounds.
- ▶ Consists of large dipole magnet and two tracking telescopes on each side
- Straw tracker made up of thin polyethylene terephthalate tubes used for each station

The Spectrometer Timing Detector

- A dedicated timing detector can be used to reduce random crossing in the detector
- ► Combinatorial di-muon background can be reduced to an acceptable level by requiring a timing resolution of 100 ps or less
 - \rightarrow Requires dedicated timing detector located after spectrometer and before calorimeters
- ▶ Two options have been proposed for the timing detector
 - 1. plastic scintillators read-out by PMTs or SiPMs
 - 2. multigap resistive plate chambers

Calorimetry

- Electromagnetic calorimeter (ECAL)
 - Located right after timing detector
 - Provides electron, photon and pion identification and energy measurements
 - Cells made of scintillator-lead structure read out by plastic WLS fibers
- 2. Hadronic calorimeter (HCAL)
 - Right after ECAL
 - Provide pion identification
 - Pion/muon discrimination for low momentum
 - ► Tag neutral particles (*K_L*, *n*) for background rejection

The Muon Detector

 Need to identify muons with high efficiency in signal channels

$$N \rightarrow \mu^{+}\pi^{-}, \mu^{+}\mu^{-}\nu_{\mu}$$

$$V \rightarrow \mu^{+}\mu^{-}$$

$$S \rightarrow \mu^{+}\mu^{-}$$

- Separate signal from ν and μ induced backgrounds
- Downstream of the calorimeter system
- Four stations of active layers separated by three muon filters
- Granularity dictated by muon filters and multiple scattering in calorimeters (5-10 cm in the transverse direction)
- Active layers extruded plastic scintillator strips with WLS fibers and opto-electronic readout

Time resolution vs. distance

- Very little difference between WAVECATCHER (135 ps in center) and SAMPIC (140 ps in center) using weighted average
- ▶ Degradation of time resolution is worse for SAMPIC at the far end → too small of an interval to fit baseline

Angular scans

Horizontal rotation

- ► 42°, 45°, 48°, 52°, 60°, 70°, 80°, 90°
- Track length increases, effective bar length decreases
 - $\rightarrow \mathsf{time} \; \mathsf{resolution} \; \mathsf{improves}$

Vertical rotation

- ▶ 60°, 70°, 90°
- ► Track length increases→ time resolution improves

