Diamond detector technology: status and perspectives

Harris Kagan for the RD42 Collaboration 12th Trento Workshop Trento, Italy Feb 20, 2017

Outline of Talk

- The RD42 Program
- Development of Material and Production Capabilities
- Diamond Devices in the LHC and Experiments
- Diamond Device Development 3D Diamond
- Rate Studies
- Summary

Additional info in talks by Giulio Forcolin and Iain Haughton on Wed

The 2016 RD42 Collaboration

The 2016 RD42 Collaboration

M. Artuso²², F. Bachmair²⁶, L. Bäni²⁶, M. Bartosik³, J. Beacham¹⁵, H. Beck²⁵, V. Bellini², V. Belvaev¹⁴, B. Bentele²¹, E. Berdermann⁷, P. Bergonzo¹³, A. Bes³⁰ J-M. Brom⁹, M. Bruzzi⁵, M. Cerv³, G. Chiodini²⁹, D. Chren²⁰, V. Cindro¹¹, G. Claus⁹, J. Collot³⁰, J. Cumalat²¹, A. Dabrowski³, R. D'Alessandro⁵, D. Dauvergne³⁰, W. de Boer¹², B. Dehning³, C. Dorfer²⁶, M. Dunser³, V. Eremin⁸ R. Eusebi²⁷, G. Forcolin²⁴, J. Forneris¹⁷, H. Frais-Kölbl⁴, L. Gallin-Martel³⁰, M.L. Gallin-Martel³⁰, K.K. Gan¹⁵, M. Gastal³, C. Giroletti¹⁹, M. Goffe⁹, J. Goldstein¹⁹, A. Golubev¹⁰, A. Gorišek¹¹, E. Grigoriev¹⁰, J. Grosse-Knetter²⁵, A. Grummer²³, B. Gui¹⁵, M. Guthoff³, I. Haughton²⁴, B. Hiti¹¹, D. Hits²⁶, M. Hoeferkamp²³ T. Hofmann³, J. Hosslet⁹, J-Y. Hostachy³⁰, F. Hügging¹, C. Hutton¹⁹, H. Jansen³, J. Janssen¹, H. Kagan^{15,} K. Kanxheri³¹, G. Kasieczka²⁶, R. Kass¹⁵, F. Kassel¹² M. Kis⁷, G. Kramberger¹¹, S. Kuleshov¹⁰, A. Lacoste³⁰, S. Lagomarsino⁵, A. Lo Giudice¹⁷, E. Lukosi²⁸, C. Maazouzi⁹, I. Mandic¹¹, C. Mathieu⁹, N. McFadden²³, M. Menichelli³¹ M. Mikuž¹¹, A. Morozzi³¹, R. Mountain²², S. Murphy²⁴, M. Muškinja¹¹, A. Oh²⁴, P. Olivero¹⁷, D. Passeri³¹, M. Pauluzzi³¹, H. Pernegger³, R. Perrino²⁹, F. Picollo¹⁷, M. Pomorski¹³, R. Potenza², A. Quadt²⁵, A. Re¹⁷, M. Reichmann²⁶, G. Riley²⁸, S. Roe³, D. Sanz²⁶, M. Scaringella⁵, D. Schaefer³, C. Schmidt⁷, S. Schnetzer¹⁶, T. Schreiner⁴, S. Sciortino⁵, A. Scorzoni³¹, S. Seidel²³ L. Servoli³¹, B. Sopko²⁰, V. Sopko²⁰, S. Spagnolo²⁹, S. Spanier²⁸, K. Stenson²¹, R. Stone¹⁶, C. Sutera², B. Tannenwald¹⁵, A. Taylor²³, M. Traeger⁷, D. Tromson¹³, W. Trischuk^{18, ()}, C. Tuve², L. Uplegger⁶, J. Velthuis¹⁹ N. Venturi¹⁸, E. Vittone¹⁷, S. Wagner²¹, R. Wallny²⁶, J.C. Wang²², J. Weingarten²⁵, C. Weiss³, T. Wengler³, N. Wermes¹, M. Yamouni³⁰, M. Zavrtanik¹¹

¹ Universität Bonn, Bonn, Germany ² INFN/University of Catania, Catania, Italy ³ CERN, Geneva, Switzerland ⁴ FWT, Wiener Neustadt, Austria ⁵ INFN/University of Florence, Florence, Italy ⁶ FNAL. Batavia, USA ⁷ GSI, Darmstadt, Germany ⁸ loffe Institute, St. Petersburg, Russia ⁹ IPHC, Strasbourg, France ¹⁰ ITEP. Moscow. Russia ¹¹ Jožef Stefan Institute, Ljubljana, Slovenia ¹² Universität Karlsruhe, Karlsruhe, Germany ¹³ CEA-LIST Technologies Avancees, Saclay, France ¹⁴ MEPHI Institute, Moscow, Russia ¹⁵ The Ohio State University, Columbus, OH, USA ¹⁶ Rutgers University, Piscataway, NJ, USA ¹⁷ University of Torino, Torino, Italy ¹⁸ University of Toronto, Toronto, ON, Canada ¹⁹ University of Bristol, Bristol, UK ²⁰ Czech Technical Univ., Prague, Czech Republic ²¹ University of Colorado, Boulder, CO, USA ²² Syracuse University, Syracuse, NY, USA ²³ University of New Mexico, Albuquerque, NM, USA ²⁴ University of Manchester, Manchester, UK ²⁵ Universität Goettingen, Goettingen, Germany ²⁶ ETH Zürich, Zürich, Switzerland ²⁷ Texas A&M, College Park Station, TX, USA ²⁸ University of Tennessee, Knoxville, TN, USA ²⁹ INFN-Lecce, Lecce, Italy ³⁰ LPSC-Grenoble, Grenoble, Switzerland ³¹ INFN-Perugia, Perugia, Italy

31 Institutes

130 Participants

12th Trento Workshop - Trento, Italy

Focus Areas of RD42:

- Characterization of diamond (materials work)
- Work with manufacturers (feedback)
- Development of machine devices (BLM, lumi)
- Development of detectors (pad, strip, pixel, 3D)
- Irradiation (JSI,LANL) and Beam tests (CERN, PSI)

This talk will try to bring you an overview of this work.

- Wafer production capabilities expanded/higher quality
 - ◆ 300-325um ccd in production (+=500um); 5% uniformity
 - ♦ 400um ccd goal in sight!

2013

2016

1. Cryogenic BLMs

2. Fast diamond BLMs

Fast diamond BLMs

* 2015 LHC beam commissioning

- high injection losses were observed at the LHC internal beam absorber blocks (TDI) in IP2 and IP8.
- * Theses losses reached up to **90% of the dump threshold** of the respective beam loss monitors (BLM).
- Diamond based particle detectors are installed downstream of the TDIs in the injection regions of the LHC.

Marcin Bartosik – RD42 Collaboration Meeting

Marcin Bartosik – RD42 Collaboration Meeting

7

Fast diamond BLMs

- Their nanosecond time resolution allowed to identify the time structure of the injection losses for the first time.
- During dedicated beam time at the LHC methods for mitigating these injection losses were successfully demonstrated.
- By exciting the recaptured beam around the nominal bunch train with SPS tune kicker magnet a reduction of the loss signal by 35% was achieved.

- Beam Conditions Monitors/Beam Loss Monitors
 Essentially all modern collider experiments
- Current generation Pixel Detectors
 - •ATLAS DBM (low threshold operation)
- Future HL-LHC Trackers
 - •3D diamond

- ATLAS DBM: diamond pixel detectors in ATLAS (tracking)
- Total production: 45 diamonds (500 μ m thick) w/FE-I4b
- Modules Assembled at CERN
- Installed during LS1

8 telescopes (2 Si\6 Diamond) symmetric around ATLAS IP

854mm < |z| < 1092mm 3.2 < |η| < 3.5

12th Trento Workshop – Trento, Italy

- ATLAS DBM integrated in ATLAS readout in 2015
- Thresholds tuned to 2500e

•Would like to lower this (1100e possible on bench)

• Took data - found operation issues

• Use hits from the 3 modules for reconstructing tracks

Longitudinal distance of the projected particle tracks to the interaction point

Radial distance of the projected tracks of the closest approach to the interaction point

- Can discriminate between IP and background particles
 Plots above use initial alignment (final still to be done)
- 2 electrical incidents in 2015 caused loss of modules(Si/D)
 now in re-commissioning phase

² IJS Ljubljana

12th Trento Workshop - Trento, Italy

Harris Kagan

- Test beam campaigns at CERN SPS to study the DBM characteristics:
- Lower charge from diamond necessitates low threshold operation of FE chip
- Developed a new tuning algorithm for FE-I4B not using Pulser DAC: Threshold Baseline Tuning

Threshold tuning	Method	Threshold
Standard ATLAS	Pulser DAC	~ 3-4 ke (Si)
Standard Threshold Tuning	Pulser DAC	~ 1.5-2.2 ke (Diamond)
Threshold Baseline Tuning	Noise Occupancies	~ 1 ke (Diamond)

"Low Threshold" (1500-2500e)

Threshold Baseline (1000e)

Results applicable in ATLAS - something like this will be necessary for irradiated silicon as well

12th Trento Workshop - Trento, Italy

Harris Kagan

DBM Summary

- Low threshold method developed
- DBM Modules perform as expected in test beam
 - Ave efficiency of planar Si modules 97.5%,
 - Ave efficiency of planar Diamond modules 94%
- Now re-commissioning DBM in ATLAS

After severe radiation damage all detectors are trap limited
Mean free paths < 75µm
Would like to keep drift distances smaller than mfp

Have to make resistive columns in diamond for this to work -columns made with 800nm femtosecond laser -initial cells 150 μ m x 150 μ m; columns 6 μ m diameter

Simultaneously readout all 3 devices

Last year results of 3D scCVD diamond published -Compared scCVD strip detector (500V) with 3D (25V) This year the first 3D device in pCVD diamond -Compare pCVD strip detector (500V) with 3D (60V) See talk by Giulio Forcolin for full details and simulation

- \bullet 3D cells are 150 μm x 150 μm
- Measured noise (~proportional to capacitance):
 - Planar strip: 80e
 - Phantom: 82e
 - 3D no noisy strips: 94e

- Measured column efficiency: 92%
- Measured Signal:
 - Visually 3D gives more charge than planar strip!

12th Trento Workshop - Trento, Italy

• Measured signal (diamond thickness 500um):

- Planar Strip ave charge
 - 6,900e or ccd=192um
- 3D ave charge
 - 13,500e or ccd_{eq} =350-375um
- For the first time collect >75% of charge in pCVD

- In May/Sept 2016 tested first full 3D in pCVD with three dramatic improvements
 - An order of magnitude more cells (1188 vs 99)
 - Smaller cell size (100um vs 150um)
 - Higher column production efficiency (99% vs 92%)

Readout side

HV bias side

Production Plans: ATLAS, CMS 3D pCVD Pixels

- Laser fabrication of resistive columns: Oxford(in progress)
- Mask set: Manchester(in progress)
- Cleaning/Metallization: Ohio State(next week)
- Bump Bonding: Princeton(Oct), CNM(2017), later IZM
- Module Building/Testing: ETH-Z, Rutgers(CMS), Bonn(FE-I4)
- Irradiation: JSI/Ljubljana
- Beam Tests: ETH-Z, JSI, Göttingen [Oct 20-24, 2016 (PSI)]

12th Trento Workshop - Trento, Italy

Harris Kagan

Rate studies in pCVD diamond

- \bullet Done at PSI Last year published rates up to 300kHz/cm^2
- This year w/new electronics, rates up to 10-20MHz/cm²
- Pad detector tested in ETH-Z telescope (CMS Pixels)
- Electronics is prototype for HL-LHC BCM/BLM

19.8ns bunch spacing clearly visible

Rate studies in pCVD diamond

- Done at PSI Last year published rates up to 300kHz/cm²
 This year w/new electronics, rates up to 10-20MHz/cm²

No rate dependence observed in pCVD up to 10-20MHz/cm²

Summary

Worked closely with manufacturers

- Material quality increased
- Production capabilities increased
- Diamonds in the LHC machine making impact moving forward
- ATLAS/CMS -BCM, BLM, DBM will see collisions again soon
 Abort, luminosity and background functionality in all LHC expts
- First pixel project is about to start taking data
 - ATLAS DBM being commissioned for 13 TeV collisions
- 3D detector prototypes made great progress
 - 3D works in pCVD diamond; scale up worked; smaller cells worked
- Quantified understanding of rate effects in diamond
 - pCVD shows no rate effect up to 10-20MHz/cm²
- 3D diamond pixel devices being produced (10¹⁷/cm²)

Backup Slides

ATLAS DBM: built on success of BCM - pixelate the sensors

- Use IBL demonstrator modules
- Installed in 2013 during service panel replacement
- Four 3-plane stations on each side of ATLAS

Beam Test at CERN SPS 2015

July/August 2015:

- 77 Mio triggers
- 57 runs

October 2015:

- 115 Mio triggers
- 56 runs

May 2016

Modules:

- MDBM-30 (ADBM-33 (E6-old), mounted in 2013)
- MDBM-120 (ADBM-58 (II-VI), mounted in 2014)
- MDBM-107 (ADBM-17 (E6), mounted in 2015)
- MDBM-37 (ADBM-19 (E6), mounted in 2015)
- MDBM-108 (ADBM-18 (E6), mounted in 2015)
- MDBM-119 (ADBM-60 (II-VI), mounted in 2015)
- CD182 (scCVD)
- DDL7 (scCVD)

MDBM-120

CD182

2

RD42 - Jens Janssen Harris Kagan

Compare standard "Low Threshold" tuning (1500-2200e) and new Threshold Baseline tuning (1000e)

Threshold Baseline Tuning

- Avoid using on-chip charge injection circuit
- Two loops:
 - Outer loop decreases global threshold
 - Inner loop increases pixel threshold
- Initial condition:
 - Set GDAC (global threshold) to a rather high value
 - Set TDAC (pixel threshold) to lowest possible threshold

Photos of holes and Resistance measurement

- Resistance $\sim 50 k\Omega$
- Efficiency 92+-3%

Production Plans: ATLAS, CMS 3D pCVD Pixels

 Collaboration: Bonn, CERN, ETH-Zürich, Göttingen, JSI/Ljubljana, Manchester, OSU, Oxford, Rutgers, UC Sacramento

First double-sided device

Harris Kagan