

Univerza *v Ljubljani* Fakulteta za *matematiko in fiziko*

Measurements of passive structures on irradiated HV-CMOS detectors

12th Trento Workshop, 21.02.2017

<u>Bojan Hiti</u>, Vladimir Cindro, Andrej Gorišek, Gregor Kramberger, Igor Mandić, Marko Mikuž, Marko Zavrtanik On behalf of ATLAS Strip CMOS collaboration

Jožef Stefan Institute, Experimental Particle Physics Department (F9) Ljubljana, Slovenia

Outline

- CHESS 2 chip introduction
- Edge-TCT measurements
- Acceptor removal parameters
- ⁹⁰Sr measurements
- Summary

CHESS 2 chip

- Developed by the ATLAS Strip CMOS collaboration as a candidate for HVCMOS strip detector for ATLAS Phase II upgrade
- Design by UCSC, SLAC and KIT, produced in AMS H35 process, max. bias 120 V
 - H. Grabas, Chess2 front end readout of the multi-segmented HV CMOS sensors, FEE 2016
- Reticle size demonstrator chip, follow up of CHESS 1
 - 3 striplet arrays with fully digital encoding and readout
 - 1 pixel array with an in-strip amplifier and analog readout
 - Several passive arrays for material studies subject of this talk

Passive test structures on CHESS 2

- Edge-TCT arrays, 3 x 3 pixels, pixel size: 630 x 40 μm^2 (six 90.2 μm x 24.3 μm nwells in each pixel)
- Large Passive Array, 1.3 x 1.3 mm² for ⁹⁰Sr measurements, implants ganged together (Large n-well, not used here)
- Chips produced on four different substrate resistivities
 - 20 Ω·cm, 50 Ω·cm, 200 Ω·cm, 1 kΩ·cm
- Irradiation study:
 - Samples irradiated with neutrons in Ljubljana
 - Fluences: 0, 1e14, 3e14, 5e14, 1e15, 2e15 n_{eq}/cm²
 - Total 24 chips (4 x 6)

Edge-TCT

Edge-TCT setup

(more details: <u>www.particulars.si</u>)

TCT measurements with passive pixels (no amplifier in the n-well)

→ collecting electrode connected to the amplifier

Edge-TCT measurements

- Sensors only partially depleted
- Edge-TCT allows to study the depletion depth dependence on voltage/fluence
- Charge collection width = FWHM of the charge collection profile

- Charge collection width at 120 V changes with irradiation
- Increase at fluences above 5e14 n_{eq}/cm² initial acceptor removal
- Low substrate resistivity ightarrow late acceptor removal

50 Ω ·cm Edge-TCT charge collection profiles

• Charge collection width increases up to 1e15 n_{eq}/cm^2 , then reducing • Acceptor removal finished earlier than with 20 Ω ·cm substrate

200 Ω ·cm Edge-TCT charge collection profiles

- variations of charge collection width are small
- Maximal width reached around 5e14 n_{eq}/cm²

- Unirradiated sample could not be biased (breakdown)
- Initially large charge colleciton width > 100 μ m
- Charge collection width monotonously falling with irradiation
- High resistivity \rightarrow acceptor removal completed below 1e14 n_{eq}/cm²

Bojan Hiti (IJS)

CHESS 2 passive structures

50 Ω ·cm charge collection width vs. bias voltage

Width of charge collection region at 40% max

Width(
$$V_{\text{bias}}$$
) = $w_0 + \sqrt{\frac{2\varepsilon\varepsilon_0}{e_0}V_{\text{bias}}}$

- 1000 Ω·cm best material in terms of depletion depth
- But sensitive breakdown behaviour

$N_{\rm eff}$ vs. fluence

Bojan Hiti (IJS)

Charge collection width vs. fluence in CHESS 2

- Charge collection width at 100 V for different wafers/fluences
- Calculated from N_{eff} measured with Edge-TCT using formula $\text{Width}(V_{\text{bias}}) = \sqrt{1}$

 $\frac{2\varepsilon\varepsilon_0}{e_0 N_{\rm eff}} V_{\rm bias}$

⁹⁰Sr measurements

⁹⁰Sr setup

- HV-CMOS: small signals, large noise \rightarrow S/N very low
 - clean sample of events needed (no hits missing DUT)
 - require a large detector (trigger rate), good collimation, small scintillator
- Measurement:
 - Calibration with a 300 μm thick Si pad detector
 - 1) Record *N* (= 2500) waveforms
 - 2) Average over all waveforms and determine time of the signal peak
 - 3) Sample waveforms at the peak
 - 4) Fill spectrum

20 Ω·cm, ⁹⁰Sr

- Diffusion contribution of approx. 1000 e⁻ vanishes after irradiation
- Signal increase due to acceptor removal at high fluences
- Minimal mean charge at 100 V: 1000 e^{-} (but would expect > 1600 el from N_{eff})

50 Ω·cm, ⁹⁰Sr

Minimal mean charge at 100 V: 1300 e⁻ (extrapolated)

200 Ω ·cm, ⁹⁰Sr

Minimal mean charge at 100 V: 2000 e⁻ (extrapolated)

1000 Ω·cm, ⁹⁰Sr

Minimal mean charge at 100 V: 2000 e⁻ (extrapolated)

⁹⁰Sr comparison for different substrates

- CHESS 1 vs. CHESS 2 (20 Ω·cm) : trend is similar, but mean charge differs could be due to a different wafer composition → different acceptor removal
- More than 2000 el in whole fluence range for 200 Ohm-cm and 1 kOhm-cm
- Measured charge after irradiation smaller then expected from depleted depth calculated from N_{eff}

Bojan Hiti (IJS)

Summary

- Completed measurements of charge collection on passive structures on CHESS 2
 - 4 wafer resistivities $20 1000 \Omega \cdot cm$, each wafer 6 neutron fluences up to 2e15 n/cm2
 - Edge-TCT and ⁹⁰Sr MIPs
- Edge-TCT:
 - Study of charge collection width for different substrates / irradiation levels
 - Charge collection width may increase with irradiation \rightarrow acceptor removal
 - Determined parameters of the acceptor removal model

• ⁹⁰Sr

- Mean collected charge at least 1000 electrons for any substrate and fluence
- Collected charge roughly follows the behaviour from Edge-TCT (increase due to acc. removal)
- Mean signals more than 2000 e⁻ in whole fluence range for 200 Ω ·cm and 1000 Ω ·cm
- 200 Ω ·cm: smallest changes over whole fluence range

BACKUP

I-V characteristics

10

8

6

2

10

6

2

0

l_{leak} (μA)

l_{leak} (µA)

Bojan Hiti (IJS)

26

Depletion zone shape at large depths

- Large peak at the back side of charge collection profiles is commonly observed (especially with high resistivity samples)
- This is due to an expansion of the depletion zone along the direction of the beam (pear shape)
- Extra charge is due to an increased path of the beam in the sensitive region
- This occurs for depleted depth ≥ structure width and on narrow structures (few neighbours)

Good response uniformity – no gaps between n-wells

Comparison of results from Edge-TCT and ⁹⁰Sr

From Edge-TCT (N_{eff}) calculate depleted depth W

Width(
$$V_{\text{bias}}$$
) = $\sqrt{\frac{2\varepsilon\varepsilon_0}{e_0 N_{\text{eff}}}} V_{\text{bias}}$

- assume 1000 e from diffusion before irradiation
- Simulate charge collection in a pad detector of thickness W to estimate trapping loss

• Observation: with ⁹⁰Sr less charge is collected than expected from Edge-TCT

• The reason is not understood: maybe simple pad detector approximation not correct, hints: different behaviour of border vs. central pixels (see backup)

Bojan Hiti (IJS)

Top TCT 1

On irradiated samples charge from ⁹⁰Sr measurements systematically less than expected for the depletion depth measured by Edge-TCT

- Investigation with top TCT
 - IR light 980 nm, absorption depth in Si 100 μ m \rightarrow no reflections from back plane

Bojan Hiti (IJS)

Top TCT 2

800

600

400

200

0 0

200

Difference in the collected charge indicates a larger depletion depth on the edges of the ⁹⁰Sr array.

Edge-like pixels also measured in Edge-TCT. This may be a reason for discrepancy between the measurements.

Bojan Hiti (IJS)

400

600

800

CHESS 2 passive structures

Q-TCT calibration 1

Sr90 calibration procedure

- using epitaxial diodes with known thickness (d = 50 and $100 \ \mu$ m) similar thickness to CHESS 2, well known response
- after epi-layer is fully depleted extract scaling factor A = d x 100 pairs/µm / V_{sig}

Only n-type diodes could be biased highly enough for calibration p-type breaks down at 60 V, before full depletion

Q-TCT calibration 2

Results:

calibration with n-type epi diodes unirradiated CHESS 2 devices are compatible with the calibration irradiated CHESS 2 devices (different wafers) have less charge than expected:

⁹⁰Sr spectra 1000 Ω·cm

Bojan Hiti (IJS)

CHESS 2 passive structures

21. 02. 2017

34