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Note: plots are from the Technical Design Report for the ATLAS ITk Strip Detector,
unless otherwise stated
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Modules

O Sensor

— n+-in-p FZ Drawing of a barrel short strip module

Wire-bonds

DC-DC converter

O Hybrid

— Low mass PCB hosting the readout Wire-bonds
ASICs: ABCStar & HCCStar '

Power
board

ABCStar

O Power board
— DC-DC converter Sensor
— HV multiplexer

— AMAC (autonomous monitor and
control) chip for monitoring and ~97mm
interrupt

~97mm
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Overall electronics architecture

O Bus tape servicing a group of modules
— Copper/kapton tape co-cured onto the local support structure
— Routing TTC, data, power and DCS between modules and EOS card

O End Of Substructure card
— Electrical interface between on- and off-detector (data and power)
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Readout ASICs

O ABC: ATLAS binary chip
— Strips readout ASIC
— Converts incoming signal from the sensor to binary hit information
— Production chip: ABCStar
— Prototype: ABC130

O HCC: Hybrid Controller Chip
— Interface between ABCStar chips and off-detector
— Production chip: HCCStar
— Prototype: HCC130

O Technology: GF (ex IBM) 130nm CMOSS8RF technology
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Star architecture

O LO/L1 rate = 500kHz/200kHz > 1MHz/400kHz

O Daisy-chain readout architecture as
implemented in the prototype chips cannot
support new trigger requirements

O Serial transfer of data between ABCs to HCC
- direct communication from all ABCs to the
HCC = star architecture

O Changes required in the design of both ASICs
wrt. prototypes

— For the HCC almost a complete redesign is
needed
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architecture architecture
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Trigger options:

Original trigger scheme:

Multi-trigger data flow

1 MHz LO 10% R3 400kHz L1
O LO Single Trigger Scheme:
— Synchronous to bunch crossing 1MHz LO
— Select data for readout Low Latency L0 Scheme:
— Global readout in single trigger 2-4 MHz LO <10% R3 600-800kHz L1

mode (with constraint that 10% ROlIs + L1s < 1 MHz readout of

everything)
O R3 (regional readout request)

— Asynchronous readout request with priority (PR) and low latency

— Distributed to part of the detector to get tracking data participating
to the L1 trigger

O L1
— Asynchronous readout request with low priority (LP) o0
— Readout of the complete detector




L.CB protocol

O LO signal, commands and BCR (bunch counter reset) signal
are encoded in one data stream, the LCB

O The LCB data stream is 6b/8b encoded and sent at 160MBit/s

O A pair of 8b symbols is a frame and lasts 4BC (bunch
crossings), i.e. 100ns

O Allows triggering on multiple successive beam crossing and a
tagged triggered readout
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LCB protocol: LO/BCR frame

BCR .

O BCR (1bit)
— 1 means that there is a BCR in last of the 4 BC always

O LO signal for up to 4 consecutive BC (4 bits)
— One of the four bits =1 - L0 in the corresponding BC

O LOtag of the first LO (7 bits)
— LO identifier to associate events to the correct trigger

— Subsequent LO have incrementing tags o




LOtag

O Current scheme for silicon detectors
— Data from modules are sent with two identifiers: LOID and BCID

— These are used by the off-detector DAQ to assign data to the
correct trigger

— For this mechanism to work, the on-chip and DAQ ID counters must
be in synch

— On-detector counters are susceptible to radiation induced errors
and buffer overflow

— Aloss of synch results in a loss of data for successive events
until synch is recovered by resetting the counter

O LOtag scheme
— The LOID is generated by the DAQ and attached as a tag to the LO
— Modules receive the LOID and send back data with this identifier
— Errors affect only one frame (i.e. 4 triggers)
— No need for synchronized counters




HCC star
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ABCStar: analogue FE

O 256 channels with amplifier, shaper, and discriminator
O Modified with respect to the ABC130 FE to improve noise operation

with n*-in-p sensors before and after irradiation

— Amplifier feedback changed from active to resistive
— Transistors critical for noise have enclosed layout geometry
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ABCStar: digital functionality

O The outputs of the discriminator are sampled at 40MHz and stored in
the LO_buffer for a fixed (programmable) latency

O @LO data with the correct latency are transferred to the Event Buffer,
with LOID = LOtag received with the LO

O @PRJ/LP data with the correct LOID are transferred to Cluster Finder
O The readout block transmits data serially at 160MBit/s to the HCCstar
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Digital current increase

O Irradiation campaigns

— X-rays, Co60 source, 23MeV protons
— Dose rate = 2.35Mrad/h to 0.6krad/h
— T =+4+20C to -10C

O Increase of digital current observed for
TID up to 1-2Mrad. Recover towards pre-
rad values at higher TID

— Dependent on dose rate and T

O When the irradiation stops, the current
decreases towards pre-rad value and
starts increasing again when the
irradiation restarts

os: X-rays and Co60
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NMOS leakage current increase with TID

NMOS leakage current vs. TID
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Model of current increase

O The current increase factors at
different temperatures and dose
rates have been fitted

O The fit functions can be used to
calculate the maximal current
increase in different regions of the
detector - define specifications
for detector services (cables,
cooling, mechanics, ...)

O More irradiations are currently
ongoing at the Co60 source at BNL
to cover more dose rate and T
combinations

Source T Current Dose Rate
°Q) Increase (MRad/h)

%0Co CERN —25 25 0.0023

0Co CERN —10 1.9 0.0023

%0Co CERN -10 1.3 0.0006

Birmingham-p —25 9.7 1.25

X-ray CERN —15 3.9 0.062

(extrapolated) —10 35 0.062

X-ray CERN —-15 13.6 2.25

X-ray CERN +20 5.2 2.25
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inNoise [% increase]

ENC

ABC130 ABCstar FE prototype
O ENC increases with TID O Noise increase <10% @
O Possible reason: 1/f noise 50.46Mrad
O Reports from 130nm O The use of ELT transistors
technologies show substantial improves noise performance
increase of 1/f noise for NMOS
transistors and no change for
ELT
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SEU tests

O 24GeV protons at CHARM, ABC130 and 3
ABC130 + HCC130
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Conclusion

O The readout chips for the ITk strip detector are designed to satisfy
ATLAS trigger and radiation hardness requirements

— Star readout architecture, multi-trigger data flow, LCB protocol &
LOtag

— ABCStar analogue FE with resistive feedback and ELTs

O TID tests at different dose rates and temperature

— Allow to estimate current increase in different part of the detector
over the experiment life-time

— Confirm low noise operation after irradiation

O Measured SEU cross-sections are acceptable for operation at HL-LHC
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Backup
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Numbers

Barrel Radius # of # of # of # of # of Area
Layer: [mm] staves modules hybrids of ABCStar channels [m?]

LO 405 28 784 1568 15680 4.01M 7.49

L1 562 40 1120 2240 22400 5.73M 10.7

L2 762 56 1568 1568 15680 4.01M 14.98
L3 1000 72 2016 2016 20160 5.16M 19.26
Total half barrel 196 5488 7392 73920 18.92M 5243
Total barrel 392 10976 14784 147840 37.85M  104.86
End-cap Z-pos. # of # of # of # of # of Area
Disk: [mm] petals modules hybrids of ABCStar channels [m?]

DO 1512 32 576 832 6336 1.62M 5.03

D1 1702 32 576 832 6336 1.62M 5.03

D2 1952 32 576 832 6336 1.62M 5.03

D3 2252 32 576 832 6336 1.62M 5.03

D4 2602 32 576 832 6336 1.62M 5.03

D5 3000 32 576 832 6336 1.62M 5.03

Total one EC 192 3456 4992 43008 11.01M

Total ECs 384 6912 9984 86016 22.02M

Total 776 17888 24768 233856 59.87M




ABC130 TID irradiations: gain
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Noise [ENC]

Noise [ENC]

ENC before irradiation
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Performance Difference with Signal Polarity
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* Noise performance is worse after sensor polarity swap: effect of signal

compression.
NEGATIVE (faster, lower in amplitude, more noisy)

2.00e+ 007
2.00e+ 007
2.00e+ 007

idth=1.00e+00,qfc
idth=2.50e+00,qfc
idth=5.00e+00,qfc

wwwwwwwww

PP
o0
iz
I
-
0o
000
o
++ 4+
000
o200
000
ER=
o000
[
[
(s}
065 o
t 44 g
000 §
e @
®
| I3
L
33 E
Q00
»
SES T
~m om0
3
&
EE
I
0

modulation of gm by the signal:
signal faster and compressed /\

resistive feedback 50 / Xw
\
4({17.86ns, )0.54mV)\

Ifeed+Isig

e

Ve Ve e =0 s time (ns) se POSIBTIVE

Effect of compression for negative signals (modulation of feedback
transistor gm) simulated at the 6% level, in reality (prototype
measurements) as high as 20%.

* This can be resolved by changing to a resistive feedback for ABCStar.
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Changes to the ABCStar FE

O Feedback change to improve gain and noise (+20% impact on
power)

O ELT layout to reduce excess noise after radiation
Channel-to-channel mismatch improvements

O Optimization for the measured detector parameters after full
radiations

O

©0




ABCStar FE prototype

O 0O 000 0d

32 channel of preamp/shaper/discriminator
Input/output multiplexer for calibration injection and data readout
One channel with analog outputs

7/ channels connected to input pads for capacitor loading
Submitted in May 2016
Received in September 2016
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SEU tests

O 000

CHARM 24 GeV protons.
Beam spills every O(5s) for 300ms, 3 X 10° protons/cm? per spill
Total dose of 6 MRad reached in one week
Two independent read-out systems
— One ABC130 located at the center of the beam spill

— Three neighboring ABC130 chips on a hybrid read out by an
HCC130 with the beam spot centered on the middle of the three
ABC130s.

The beam spot FWHM = 10 cm (parallel to the hybrid), 5cm
(perpendicular to the hybrid)
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SEU tests

O The chip was prepared in a configured state with known register values
and known hit patterns loaded into the event buffer before the spill.

O During each spill no commands were sent to the chip. After each spill
the chip registers and event buffer were read out then reset.

O The values read from the registers and event buffer were compared
with the expected values and analyzed for Single Event Upsets (SEUSs)
and functional interruptions.
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More on SEU results

O Misconfigurations of the chips are expected to be kept well under
control with occasional reconfigurations as is done in the SCT.

O The rate of noise in the form of extra or missing hits introduced in the
data pipeline due to SEUs has been calculated as one bit flip per 7.6
million data packets transmitted.

O The rate of misidentifying the event to which a data packet corresponds
due to SEUs has been calculated as approximately one
misidentification per 109 packets transmitted.

O It is calculated that each ABC130 will send back a corrupted event no
more than once for every 2 X 109 readout requests. Here a corrupted
event is an event with at least one missing or duplicated packet. The
rate of packets in an unexpected or unknown format being returned is
found to be much smaller than the rate of duplicate or missing packets.




HCC irradiation

1.8 : : . : : 5 1.3
s
®* | e« o Dose Rate=1.25MRad/hr T=-25C £
1.7} | 91.25—
. g X-rays
s 16l e . L i 212 w
g 23MeV Protons 5 F / ,Q’,
< 15] °, ; : : 51.15— H
] oq & C
pL ®e o : -
g1.4l el . v 1 1.1 *
S =
E - Ty
€ 1.3} L ' , : 1.05|—
GI_) %o : —
S °e ° C
O 1.2} . . . R S ] 14
oy E
1.1} e L L L o . ..... R 0‘95:_
° C
e 1 1 1 1 1 _I 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
1.05 1 2 3 4 5 6 %9 05 1 15 2 25 3 35 4

TID [MRad] Dose [Mrad]




