Development of HV-MAPS detectors at the University of Liverpool

E. Vilella, M. Buckland, G. Casse, L. Meng, S. Powell, J. Vossebeld, S. Wonsak, C. Zhang

Department of Physics,
University of Liverpool,
Oliver Lodge,
Liverpool L69 7ZE
UK

vilella@hep.ph.liv.ac.uk
Outline

1. Aim and collaboration
2. HV-CMOS chips
3. LFoundry HV-MAPS chip
4. Test structures in HV-CMOS chips
5. H35DEMO
6. RD50 HV-CMOS submission
7. Summary
Aim and collaboration

- **R&D of HV-MAPS detectors** for the HL-LHC ATLAS upgrade and other future HEP experiments

- Many people from many different institutes are involved:
 - BNL → F. Lanni
 - CERN
 - IFAE → R. Casanova, E. Cavallaro, F. Förster, S. Grinstein, S. Terzo
 - KIT → R. Blanco, F. Ehrler, R. Leys, I. Peric
 - RD50 collaboration
 - University of Bern → M. Weber
 - University of Geneva → M. Benoit, F. Guezzi Messaoud, G. Iacobucci
 - University of Heidelberg → A. Schöning
 - University of Liverpool → M. Buckland, G. Casse, L. Meng, S. Powell, E. Vilella, J. Vossebeld, S. Wonsak, C. Zhan
HV-CMOS chips

H35DEMO - Features:
- ams 0.35 µm HV-CMOS (H35)
- Different matrices (2 CCPD and 2 monolithic) and test structures
- Pixel size is 50 µm x 250 µm (for compatibility with FE-I4)
- Resistivities: 20 Ω·cm, 80 Ω·cm, 200 Ω·cm and 1k Ω·cm
- Delivered in December 2015 (eng. run)

Features:
- LFoundry 150 nm HV-CMOS
- Contributions from IFAE, KIT, Uni. Geneva and Uni. Liverpool
- Different matrices (1 CCPD and 5 monolithic) and test structures
- Resistivities: 100 Ω·cm, 500-1.3k Ω·cm, 2k-2.5k Ω·cm and 3.6k-3.9k Ω·cm
- Submitted in August 2016 (MPW)
- ASICs just delivered

Features:
- ams 180 nm HV-CMOS (H18)
- Different matrices (1 CCPD and 3 monolithic, it includes MuPix8), CLICpix and test structures
- Submitted in January 2017 (eng. run)
- ASICs will be delivered in ~April 2017
LFoundry HV-MAPS chip

Areas from top to bottom:

1) Test structures
 - TCT/e-TCT
 - sensor capacitance measurement
 - very fast measurements

2) Non-ATLAS matrix

3) Matrix of HV-MAPS pixels with FEI3-like readout
 - 40 rows x 78 columns of pixels
 - pixel area is 50 µm x 50 µm
 - analog and digital readout electronics are embedded inside the pixel area
 - analog readout electronics → preamplifier, shaper and discriminator
 - digital readout electronics → electronics to process the output of the discriminator,
 2 8-bit DRAM memories to store the TS and
 1 8-bit DROM memory to store the pixel address
 - The FEI3-like readout was designed to study very small pixels with all the readout electronics integrated inside the pixel area and to qualify this technology for the HL-LHC upgrade
 - No backside biasing option
 - Detector thickness is 280 µm
LF2 - Pixel cross-section

- The sensing diode is a p-substrate/DNWELL junction
- The DNWELL can be isolated from NWELLs/PWELLs thanks to the PSUB layer
- Therefore, it is possible to have fully CMOS electronics inside the pixel area
- In our case, we have multiple NWELLs and PWELLs:
 - 1 NWELL/PWELL for the CSA and the shaper
 - 1 NWELL/PWELL for the CMOS discriminator
 - 1 NWELL/PWELL for the digital readout
 - 1 NWELL for the pMOS transistors of the sensor bias circuit (this NWELL is connected to the DNWELL)
- The DNWELL is biased through an n⁺/NWELL/NISO structure
The analog readout is based on a biasing circuit, CSA, low-pass/high-pass filters and discriminator. The CSA is a single folded Cascode with pMOS input transistor. It has a constant value C_{FB} (1.2 fF) and programmable discharging current. The baseline (BL) voltage and low-pass/high-pass filters are adjustable. The discriminator has a local 4-bit DAC to compensate for offset variations. The signal amplitude is between ~50 mV (for 600 e⁻) and ~600 mV (for 6000 e⁻). The gain is 105 e⁻/µV. The rise time is ~20-30 ns and fall the time is ~100-600 ns (depending on feedback capacitor type and collected charge). Total power consumption per pixel is ~27 µW (pre-amplifier current is <10 µA).
LF2 - Pixel flavours

with MIM capacitance

with diffusion-type capacitance
The **digital readout** is based on:

- **Two 8-bit DRAM memories** that continuously store two time stamps (Leading Edge, Trailing Edge)
- **One 8-bit ROM memory** to store the pixel address
- **Electronics (edge detector)** to process the output of the discriminator and tell when the LE and TE have to be stored

- Pixel receives an 8-bit Gray encoded TS running at 40 MHz
- Hit flag register to avoid processing new events until the current one has been read
- Priority encoding → Pixel with asserted flag and lowest address has the highest priority
- One matrix with **4 different pixel flavours** (with MIM/diffusion feedback capacitance, with linear/enclosed transistors) → For comparison purposes
- Configuration of global DACs and pixels is done via registers
- Possibility to inject a test pulse to each pixel
- Test features → Output of each pixel SF and discriminator can be monitored (one pixel at a time)
- Pixel output is sent to EOC via bus and read out using CU (running at 640 MHz) and LVDS pad
- Test set-up development is on-going
LF2 - Test structures

A) TCT/e-TCT
3 x 3 matrix of 50 µm x 50 µm
HV-CMOS pixels without electronics

B) TCT/e-TCT
2 x 3 matrix of 75 µm x 75 µm
HV-CMOS pixels without electronics

C) Fast measurements (with a laser)
3 x 3 matrix of 50 µm x 50 µm
HV-CMOS pixels

D) Sensor capacitance measurement
1 single pixel with 50 µm x 50 µm
1 single pixel with 75 µm x 75 µm

E) 2 avalanche photodiodes for I-V measurements
LF1 and ams 180 nm - Test structures

A) TCT/e-TCT → 3 x 3 matrix of 50 µm x 50 µm HV-CMOS pixels without readout electronics
B) TCT/e-TCT → 3 x 3 matrix of 75 µm x 75 µm HV-CMOS pixels without readout electronics
C) Fast measurements → 3 x 3 matrix of 50 µm x 50 µm HV-CMOS pixels
D) Sensor capacitance measurement
 1 single pixel with 50 µm x 50 µm
 1 single pixel with 75 µm x 75 µm
E) 2 avalanche photodiodes for I-V measurements

A) TCT/e-TCT → 3 x 3 matrix of 33 µm x 125 µm HV-CMOS pixels without readout electronics
B) Sensor capacitance measurement → 1 single pixel with 33 µm x 125 µm (simple pixel)
C) Sensor capacitance measurement → 1 single pixel with 33 µm x 125 µm (pixel with TW compensation)
D) Fast measurements → 3 x 3 matrix of 33 µm x 125 µm HV-CMOS pixels
Main features:
- ams 0.35 µm HV-CMOS (H35)
- submission through an engineering run
 - submission in October 2015
 - wafer production finished in December 2015
- different substrate resistivities to improve SNR
 - 20 Ω·cm (standard), 80 Ω·cm, 200 Ω·cm, 1k Ω·cm

Areas (from top to bottom):
- standalone nMOS matrix
 - digital pixels with in-pixel nMOS comparator
 - standalone readout
- analog matrix (2 identical arrays)
 - different flavours
- standalone CMOS matrix
 - analog pixels with off-pixel CMOS comparator
 - standalone readout
- All pixels are 50 µm x 250 µm for compatibility with FEI4
H35DEMO - e-TCT measurements

No circuitry or metal layers on top of the sensing diodes

Central pixel

Measured results:

ρ=80 Ω·cm, d~35 µm @ -170 V
ρ=200 Ω·cm, d~45 µm @ -140 V

e-TCT set-up:
H35DEMO - e-TCT measurements

- Samples of the **H35DEMO in the 1k Ω·cm resistivity** were **backside processed**:
 - thinning to 100 µm
 - backside p⁺ implantation with boron
 - thermal annealing
 - backside metallization

 to allow backside biasing and achieve a **stronger, more uniform electric field in the sensing volume**
H35DEMO - e-TCT measurements

No circuitry or metal layers on top of the sensing diodes

Central pixel

e-TCT set-up:

Measured results:

Backside biasing
Fully depleted @ -40 V !!

Sensor surface

ρ=1k Ω·cm, d~100 µm @ -40 V

Topside biasing

ρ=1k Ω·cm
<table>
<thead>
<tr>
<th>Test structure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test structure 1</td>
<td>Simple CMOS capacitors to study oxide thickness</td>
</tr>
<tr>
<td>Test structure 2</td>
<td>10 x 10 matrix of very small pixels with passive readout</td>
</tr>
<tr>
<td>Test structure 3</td>
<td>10 x 10 matrix of very small pixels with 3T-like readout</td>
</tr>
<tr>
<td>Test structure 4</td>
<td>Small matrix of pixels for TCT, e-TCT and TPA-TCT measurements</td>
</tr>
<tr>
<td>Test structure 5</td>
<td>Single pixels for sensor capacitance measurements</td>
</tr>
<tr>
<td>Test structure 6</td>
<td>...</td>
</tr>
</tbody>
</table>

Design effort:

IFAE
- R. Casanova
- *Uni. Barcelona*
- O. Alonso

Uni. Liverpool
- S. Powell
- E. Vilella
- C. Zhang

Scope for further design contributions...
Summary

- Several HV-CMOS submissions in 2016:
 - 10 mm x 10 mm HV-MAPS ASIC in LFoundry 150 nm via MPW
 - 5 mm x 5 mm HV-MAPS ASIC in LFoundry 150 nm via MPW
 - 21.3 mm x 22.6 mm HV-MAPS ASIC in ams 180 nm via engineering run

- The fabricated ASICs are expected during the first quarter of 2017
 - PCBs to design
 - Firmware to write
 - Many many measurements to be done

- H35DEMO measurements are on-going

- Working towards a new HV-MAPS submission within the RD50 collaboration

Thank you for your attention!