Results from CHIPIX65 Prototype of a New Generation Pixel Readout ASIC in 65 nm CMOS for HL-LHC experiments

Luca Pacher

on behalf of INFN/CHIPIX65 project

12th Trento Workshop on Advanced Silicon Radiation Detectors

Feb 21, 2017 - Trento, Italy
E. Monteil, L. Demaria, A. Rivetti, M. Rolo, G. Dellacasa, G. Mazza, F. Rotondo, R. Wheadon
Università di Torino and INFN Sezione di Torino, Torino, Italy

A. Paternò, S. Panati
Politecnico di Torino and INFN Sezione di Torino, Torino, Italy

F. Loddo, F. Licciulli
INFN Sezione di Bari, Bari, Italy

F. Ciciriello, C. Marzocca
Politecnico di Bari and INFN Sezione di Bari, Bari, Italy

L. Gaioni, G. Traversi, V. Re
Università di Bergamo and INFN Sezione di Pavia, Bergamo, Italy

F. De Canio, L. Ratti
Università di Pavia and INFN Sezione di Pavia, Pavia, Italy

S. Marconi, P. Placidi
Università di Perugia and INFN Sezione di Perugia, Perugia, Italy

G. Magazzù
INFN Sezione di Pisa, Pisa, Italy

A. Stabile
Università di Milano and INFN Sezione di Milano, Milano, Italy

S. Mattiazzo
Università di Padova, Italy
Goals:

- development of an innovative CHIP for a PIXEL detector at extreme rates and radiation at HL-LHC conditions using a CMOS 65 nm technology for the first time in HEP community
- an efficient propagation across INFN of CMOS 65 nm technology (Bari, Lecce, Milano, Padova, Pavia, Perugia, Pisa and Torino groups)
- close synergy with CERN RD53 international collaboration

Designed to be compliant with the expected requirements of HL-LHC pixel detectors:

- 40 MHz bunch crossing frequency
- 50 \(\mu m \times 50 \mu m \) pixel size, large chips \(\sim 2 \text{ cm} \times 2 \text{ cm} \)
- up to 200 event pile-up, 3 GHz/cm\(^2\) hit rate, 75 kHz/pixel particle rate
- 1 MHz trigger rate, 12.5 \(\mu s \) trigger latency
- low power consumption \(< 0.55 \text{ W/cm}^2\), 10 \(\mu \text{W/pixel}\)
- hit efficiency \(> 99\%\) at 3 GHz/cm\(^2\)
The purpose of the CHIPIX65 demonstrator is to satisfy these requirements as a first intermediate step towards full-scale RD53A prototype:

- 64×64 pixel matrix, embedding two different Analog Front End (AFE) designs working in parallel
 - synchronous architecture (Torino INFN)
 - asynchronous architecture (Pavia INFN)

- design and implementation of a novel 4×4 region-based digital architecture for latency buffering and trigger matching

- FIFO-based readout architecture, SPI-based chip configuration
 - support for triggerless, triggered and scan-chain operations

- integration of available silicon-proven IP-blocks designed for RD53
 - bandgap voltage reference (Pavia INFN)
 - SLVS transmitters/receivers (Pisa INFN)
 - high-speed SER (Pisa INFN)
 - 10-bit biasing DAC (Bari INFN)
 - 12-bit monitoring ADC (Bari INFN)

- usage of the modified CERN rad-hard I/O library
1. 32×64 pixels with synchronous FE architecture
2. 32×64 pixels with asynchronous FE architecture
3. replicated bias cells with current mirrors
4. 10-bit biasing DACs
5. bandgap voltage reference
6. 12-bit monitoring ADC
7. readout/configuration digital block and high-speed serializer at the chip periphery
8. SLVS transmitters/receivers and I/O cells

3.5 mm × 5.1 mm
Synchronous front-end architecture

Torino INFN design group:

- telescopic-cascode CSA with Krummenacher feedback for linear Time-over-Threshold (ToT) charge encoding
- synchronous hit discriminator with track-and-latch voltage comparator
- threshold trimming by means of autozeroing using capacitors
- 40 MHz 4-bit ToT or 5-bit fast ToT counting with latch turned into a local oscillator (100-900 MHz)
- efficient self-calibrations can be performed according to online machine operations
- successfully tested (also after irradiation) using dedicated mini@sic small-prototypes
Asynchronous front-end architecture

Bergamo/Pavia INFN design group:
- folded-cascode CSA with Krummenacher feedback
- fast current comparator
- threshold trimming by means of 4-bit local DAC
- effective 80 MHz 5-bit dual-edge ToT counting at 40 MHz
- successfully tested (also after irradiation) using dedicated mini@sic small-prototypes
Front-end layouts comparison
An innovative region-based digital pixel architecture able to sustain expected data and trigger rates at HL-LHC has been developed for the CHIPIX65 demonstrator:

- pixels arranged into **pixel regions** composed of 4×4 pixels
- analog front-ends arranged in form of **analog islands** into a **digital sea**
- fully automated synthesis/place-and-route on an entire pixel region (**digital-on-top** approach)
- a common digital logic shared among pixels **stores hits information** for the whole trigger latency, handles the **local configuration**, performs **trigger matching** and sends zero-suppressed hit data to the chip periphery upon a trigger request
All logic design optimizations assessed by means of extensive analytical and physics-driven high-level simulations using the verification environment based on SystemVerilog and Universal Verification Methodology (UVM) classes developed within the RD53 collaboration:

- charge information retrieved by means of ToT encoding using per-pixel 5-bit ripple counters
- unique centralized latency memory shared among 16 pixels (latch-based circular FIFO)
- memory usage optimized without writing unnecessary zeroes according to expected event rates
- data-compression based on priority encoding with ToT words saved for only 6 fired pixels accessing the shared buffer
- binary information always registered for all pixels (hit map)
Digital End-of-Column (EOC)

- **Data readout** based on replicated Macro-Column Drainers (MCDs)
 - generation of **BX timestamp** and **trigger timestamp**
 - implementation of the column-readout protocol
 - buffering of readout data
 - data formatting to high-speed serializer

- **Serial Peripheral Interface (SPI) slave port** for chip configuration and slow control
 - write/read Pixel Configuration Registers (PCR) and Global Configuration Registers (GCR)
 - SER synchronization, ADC and autozeroing control commands

- **Design For Test (DFT) flow** added to readout components
 - scan-chain synthesis for all FSMs
 - scannable shadow-logic inserted around FIFOs (excluded from scan insertion)
all reference voltages/currents required by analogue front-ends in the pixel array internally generated using on-chip programmable DACs
- bias voltages/currents
- global thresholds, calibration

10-bit segmented current-steering DACs
- one global DAC for each analogue voltage/current featuring fine-tuning or programmability requirements

bandgap voltage reference
- well-defined and PVT-independent reference current for current DACs
- on-chip 12-bit ADC for monitoring bias/reference currents and bandgap reference voltage
- all DAC currents are also mirrored and can be probed on a dedicated test pad through multiplexing
 - external high-precision resistor (0.1%, ±25 ppm/°C), 4 different values required
 - 12-bit external ADC and multimeter to calibrate internal ADC
Chip periphery layout
Pre-irradiation test results
Test setup

- chips received back from the foundry at the end of September, 2016
- preliminary tests started in both Torino and Bergamo INFN labs
- fully-digital ASIC/FPGA interface based on FMC
- prototype wire-bonded on a custom test board
- a few test points to monitor global bias voltages/currents
- custom Ethernet/UDP firmware supporting both Virtex-7 and Artix-7 Xilinx FPGA boards
- NI/LabView data acquisition interface supporting all chip operations
Charge-injection characteristics
Calibration DAC

- per-pixel generation of the analog test pulse starting from two well defined DC levels
- charge-injection triggered in selected pixels by a digital switching signal distributed to all pixels
- precise 8 fF per-pixel injection capacitance using MOM cap
- one global 10-bit calibration DAC common to both synchronous and asynchronous pixels
- good agreement between measurements and CAD simulated data
Monitoring ADC

- Calibration voltage fed to monitoring ADC, converted data read back through SPI
- ADC implements a **self-calibration algorithm** to minimize comparator offset (but digital trimming through dedicated configuration registers also supported)
- Linear ADC characteristic, good agreement between measurements and CAD simulated data
- Fully-automated extraction of DNL/INL performance metrics not yet implemented in software
Synchronous FE results
- all pixels tested and fully working
- autozeroing performed each 200 µs
- effective **noise** and **threshold** values determined by means of S-curves
- measurements performed with **charge scans** and **fixed threshold**
- **hit efficiency** recorded for 100 charge-injection pulses
- measured points fitted using an error function (sigmoid)
- noise and threshold values extracted from means and variances distributions
Threshold measurements with autozeroing

- Effective threshold measured for different values of fixed global threshold
- Autozeroing works, residual offset value of about 100 e^- RMS in good agreement with CAD simulations ($\approx 70 e^-$ RMS latch dynamic offset)
- Linear increase as expected
- Threshold-to-charge characteristic from fit
- $\approx 250 e^-$ RMS minimum threshold
Noise measurements

ENC measured for different values of fixed global threshold
- constant behavior with threshold values as expected
- $\text{ENC} \approx 90\,\text{e}^-$ RMS in good agreement with CAD simulations
- low-noise performance assured despite continuous latch and region-logic digital switching activity
Fast Time-over-Threshold (ToT) counting

- very good linearity for the 5-bit fast ToT
- 320 MHz frequency reached for 5 ke⁻
- slope dispersion of about 10% due to mismatches in the analog part, as from CAD simulations
Asynchronous FE results
Untrimmed threshold dispersion and noise

- **Test setup** just delivered to Bergamo/Pavia INFN group, requiring some firmware modifications to target Xilinx Artix-7 evaluation board (first measurements performed in Torino).
- All pixels tested and fully working.
- \(\approx 450 \text{ e}^- \) RMS untrimmed threshold dispersion, ENC \(\approx 85 \text{ e}^- \) RMS noise before irradiation.
- Good agreement with CAD simulations.
Threshold linearity

- effective threshold measured for different values of fixed global threshold
- linear increase as expected
- threshold-to-charge characteristic from fit
- $\approx 550 \text{ e}^{-}$ RMS minimum threshold
Threshold trimming

- fully-automated calibration procedures for asynchronous pixels not yet supported by DAQ system
- preliminary threshold trimming performed offline
- per-pixel DAC codes extracted from untrimmed S-curves using a set of ROOT macros and then loaded into the chip
- electrical functionality OK, threshold compensation works for all pixels
- ≈ 125 e$^-$ RMS residual threshold dispersion, still to be optimized (test performed in Torino)
Post-irradiation test results
Irradiation procedure

- irradiation tests performed three weeks ago at the Padova INFN X-rays facility

- prototypes irradiated up to 230 Mrad Total Ionizing Dose (TID)

- irradiation at room temperature

- electronics always biased at nominal operating conditions

- continuous monitoring of chip configuration and operations, charge scans performed at different TID steps (0.2 / 0.4 / 0.6 / 0.8 / 67 and 230 Mrad)
- **chip fully-functional** after 230 Mrad, digital readout and configuration OK
- **3 μs calibration cycles** required for efficient autozeroing after 230 Mrad, still compliant with online LHC machine operations
- **threshold linearity** verified, **no significant threshold variations** observed after irradiation
Noise after irradiation

- ENC constant behavior still present after 230 Mrad TID
- no significant degradation of low-noise performance observed
Conclusions

- **CHIPIX65 demonstrator** submitted in July 2016 using 65 nm CMOS, chips received back from the foundry at the end of September
 - 64 × 64 pixel matrix, 50 µm × 50 µm pixel size

- **full-system integration** with digital-on-top design methodology
 - silicon proven **IP-blocks** developed by INFN for RD53, now used also for RD53A prototype
 - two different **analog front-end designs** working in parallel
 - novel **region-based digital architecture** for latency buffering and trigger matching

- **highly encouraging results** from preliminary tests
 - both synchronous and asynchronous front-end designs, all IP blocks and digital parts are **fully working**, good agreement with CAD simulations
 - low-noise performance (ENC ≈ 90 e− RMS) achieved for both designs despite digital activity
 - **fully-working chip also after 230 Mrad TID** with negligible degradation of analog key parameters

- **next steps**
 - **cold** irradiation tests at the CERN PH-ESE X-rays facility up to 500 Mrad/1 Grad TID
 - completion of DAQ software with some extensions
 - **bump-bonding** with 3D sensors (FBK) and planar sensors (Hamamatsu)
 - final integration of selected CHIPIX65 components into **RD53A prototype** (FE designs, bias network, pixel digital architecture)
Thank you
for your attention

N. Demaria et al., *CHIPIX65: Developments on a new generation pixel readout ASIC in CMOS 65 nm for HEP experiments*. Proceeding of the 2015 IEEE International Workshop on Advances in Sensors and Interfaces (IWASI)

L. Pacher et al., *A Low-Power Low-Noise Synchronous Pixel Front-End Chain in 65 nm CMOS Technology with Local Fast ToT Encoding and Autozeroing for Extreme Rate and Radiation at HL-LHC*. Proceeding of the 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE NSS/MIC)

L. Ratti et al., *An asynchronous front-end channel for pixel detectors at the HL-LHC experiment upgrades*. Proceeding of the 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE NSS/MIC)

E. Monteil et al., *A synchronous analog very front-end in 65 nm CMOS with local fast ToT encoding for pixel detectors at HL-LHC*. Proceeding of the 2016 Topical Workshop on Electronics for Particle Physics (TWEPP). Submitted to Journal of Instrumentation (JINST)

Backup slides
Autozeroed synchronous discriminator

- Track-and-latch voltage comparator
 - low-gain high-bandwidth differential amplifier, 1 µA bias current
 - class B CMOS latch with reduced kick-back noise
- Front-end analogue signal sampled at nominal 40 MHz clock frequency
 - in-time response below 25 ns always guaranteed for time-stamp assignment
 - no time-walk issues, leading-edge of the hit pulse always synchronized with BX
- Offset compensation performed through Output Offset Storage (OOS)
 - pixel-to-pixel threshold variations minimized without the need of a local DAC
 - SEU-tolerant registers no more required, increased available area for digital part
Latch control logic for fast ToT counting

- **Latch** can be turned into a local oscillator using asynchronous logic as performed in modern high-speed SAR-ADCs.
- High-frequency self-generated clock signals available for fast ToT counting up to GHz in 65 nm CMOS technology.
- Voltage-controlled delay line used to tune the latch oscillation frequency in the 100-900 MHz range.
- Up to 8-bit ToT digitizations achievable in less than 400 ns if requested.
autozeroing scheme suitable to fit **LHC machine online operations**

- \(f_{RF} = 40 \text{ MHz} \), \(\lambda_{RF} = 0.75 \text{ m or } 2.5 \text{ ns} \)
- bunches spaced by 25 ns or 10 buckets, 72 bunches = 1 batch
- injection of 2, 3, or 4 batches
- a 119-bunches long **bunch abort gap** is available every \(\approx 3 \mu s \)
- main **beam abort gap** every 90 \(\mu s \)
- perform autozeroing during available discontinuities within the bunch-train pattern
Synchronous FE operations

10 ke input charge and 1 ke threshold
20 nA feedback current

same front-end configuration with latch turned into a local oscillator
≈ 100 MHz self generated clock
latch dynamic offset **underestimated** in the first submitted design

significant improvement of autozeroing performance in the **second version** with a **residual offset** of \(\approx 70 \text{ e}^- \) RMS

offset **efficiently compensated** up to \(\approx 100 \mu\text{s} \) before irradiation
Mini@sic post-irradiation results

- **Average values** tracked as a function of TID
- **Pulse amplitude** shows small variations with radiation
- **Peaking time** increases for TID > 100 Mrad
- **Recovery effects** observed after 3-days annealing at room temperature
- **noise slope** increases after irradiation
- ENC linearity with input capacitance still present after 600 Mrad TID
- **latch oscillation frequency** decreases with radiation, partial recovery after 3-days annealing at room temperature