

3D sensors measurements with FEi4 read-out chips

G.F. Dalla Betta¹, R. Mendicino¹, D M S Sultan¹, M. Boscardin², S. Ronchin², N. Zorzi², M. Meschini³, A. Messineo⁴, G. Alimonti⁵, G. Darbo⁶, A. Rovani⁶, E. Ruscino⁶, G. Gariano⁶, <u>H. Oide⁶</u>, A. Gaudiello⁶, C. Gemme⁶, E. Fumagalli^{6,7}, D. Vazquez Furelos⁸

¹University of Trento and TIFPA, ² FBK, 3 INFN-Firenze, 4 University of Pisa and INFN–Pisa, ⁵ INFN-Milano ⁶ INFN-Genova, ⁷ University of Genova, ⁸ IFAE/Universitat Autònoma de Barcelona

Talk Outline

- New thin 3D pixel sensors on 6" p-type wafers at FBK.
 - Work carried out within INFN RD_FASE2 and AIDA2020 projects.
 - Targetted irradiation of Φ = 2x10¹⁶ n_{eq}/cm²
 (regarding innermost pixel layers in HL-LHC).
 - Layout compatible with FEI4 (for testing) and RD53 chips.
 - Similar design layout to CNM 3D sensor prototypes (<u>David's talk</u>).
- A first batch (9 wafers) produced in 2016.
 - Active thickness (130 µm or 100 µm) / Presence of poly-caps / ...
- FEI4-compatible sensors of a 130µm-thick wafer bump-bonded at Leonardo (previously known as Selex).
 - Multiple pixel layouts. including: { 250x50 µm² (2E), 50x50 µm² (1E), 100x25 µm² (1E) } (but not only).
- Tests and Results
 - Basic characterisation at the Genova lab.
 - The first test beam of non-irradiated 3 modules in CERN SPS H6A.

13 sensors

in total

FE-I4

0

- 50x250 (2E) std.
 - 50x50(1E)
- 25x100(1E and 2E)
- 25x500 (1E)

FE-I3

- 50x50 (1E)
- 25x100 (1E and 2E)
- PSI46dig
 - 100x150 (2E and 3E) std.
 - 50x50 (1Eand2E)
 - 50x100, 100x100 (2E and 4E)
 - 50x100, 100x150 (2E and 6E)
 - 25x100(1E and 2E)
- FCP
 - 30x100 (1E)
- RD53
 - 50x50(1E)
 - 25x100 (1E)
 - 25x100 (2E)
- Other test structures

W76 - 130 µm thickness, w/ poly-Cap - Sensor Breakdown

* 9,11,12,13: rejected for either early breakdown or too-large I_{leak}

Deposition, cutting and assembly of W76 were done at Leonardo. 9 FE-I4 sensors of W76 were delivered in late July. W78 is ongoing.

Samples for the Test Beam

ID	Size	Sensor V _{bd} [V] after assembly	Basic electric qualification
1	25x100	24	N/A
2	25x500	15	N/A
3	50x250	25	N/A
4	50x50	15	GOOD
5	50x50	2	Too-low V _{bd}
6	50x50	12	GOOD
7	25x100	>80	GOOD
8	50x250	12	GOOD
10	50x50	>80	regulator broken

- This test beam: used 3 sensors
- 50×50(1E), 25×100(1E), 50×250(2E)
- Bump-bonded by Selex
- Non-irradiated

Larger current on some samples observed after assembly wrt. wafer measurement, to be investigated.

Bump Bonding to FE-I4: Source Scan

- Threshold scan with HV-on.
- Tuning was successful for the 3 modules in the all tuning targets.
- Wrt. 50x250 µm², 50x50µm² gives slightly less noises while 25x100µm² slightly more (consistent with each capacitance).

Test Beam Setup - (CERN SPS H6A, Aconite)

- SPS H6A beam line, Aconite telescope.
- CIS4-W8-4 (single planar) as the reference.
- A tricky mechanical configuration due to the sub-optimal shape of the readout boards - needs improvements in the future.
- Tilt angle is not very accurately controlled (around 5° in row direction)
- Acquired dataset:
 - 2 cycles of HV scan at a fixed tuning (coarse/fine steps)
 - I set of tuning variation (threshold, ToT).

Short notes on data analysis

- Sparse readout for 50x50µm² and 100x25µm² sensors.
 - \rightarrow Customly implemented specialised geometry configurations.
- Acceptance of 50x50µm² and 100x25µm² is approximately 20%.
- Constraints on the cluster size:
 - 50x50 µm²: maximum size of 2 in the column direction.
 - $100x25 \ \mu m^2$: maximum size of 2 (1) in the column (row) direction.

Cluster Size

odd/even columns are folded by mirror flipping (same for the following slides).

HV Scan: Cluster size vs. Position: $250 \times 50 \mu m^2$ (thr = 1500e, ToT = 10BC / 10ke)

Inefficient, size=1, size=2 } from top to bottom.

Clear change of efficient region as a function of bias voltage.

Pixel Hit Map vs. Cluster size - 50x50 (F01-76-06)

- 250x50: unbiased.
- 50x50: hypothetically unbiased.
- 100x25: inevitably biased!!

HV Scan: Hit efficiency (after masking)

- $250 \times 50 \mu m^2$: Efficiency is >99% above ~10 V. Ramping up up to ~10 V.
- $50x50\mu m^2$: Keeping almost flat ~98% efficienty in 2 < HV < 15 V. Slight increasing of ~1%.
- $100x25\mu m^2$: shown just for reference. Qualitatively similar trend to $50x50\mu m^2$.

Variation of hit efficiency by tuning (after masking)

- A reasonable gradual change of efficiency by 1–2% is observed.
- $100x25\mu m^2$: shown just for reference.

Charge Collection: Cluster Sum ToT Map Profile

Showing simple average for each cell (not doing Landau fitting for each cell).

- Average cluster sum ToT gradually increases as a function of HV.
- Somewhat varying by the sensor type.
 - But also need to take into account the sampled readout for $50 \times 50 \mu m^2$ and $100 \times 25 \mu m^2$.
- Dispersion of 50x50µm² does not improve much by masking, and it is larger than 250x50µm².

Summary

- A first batch (9 wafers) produced in 2016
- 9 modules from W76 (130µm active thickness) were assembled to FEI4 and checked.
 - IV–curve
 - FE functionality
 - Source Scan (bump bonding check)
- Selected non-irradiated 3 modules of 50x50µm² (1E), 100x25µm² (1E), 250x50µm² (1E) are studied with the test beam dataset.
- Preliminary analysis results are given for:
 - Noise vs. HV
 - Hit efficiency vs. HV and tuning
 - Pixel-internal position dependence of efficiency, cluster size, cluster ToT
- The first look of the test beam results is generally reasonable wrt. expectation.
- Outlook: tests for high-irradiated samples to be carried out (being planned).

Backup

Hideyuki Oide 2017-02-21

19

- Single-sided processes from the face is preferred for thin sensors, esp. for 6-inch wafers.
- Thin sensors on support wafer: SiSi or SOI \rightarrow Substrate qualification
- Process Tests:
 - Ohmic columns/trenches depth > active layer depth (for V_{bias})
 - Junction columns depth < active layer depth (for high V_{bd})
 - Reduction of hole diameters to ~5 μ m
 - Holes filled with poly-Si (at least partially)

Pixel Layouts (150 µm thickness, 130 µm n⁺-column depth)

Plots by D M S Sultan

Simulation

Simulated Performances - Signal Efficiency

The signal efficiency depends on the internal position of the pixel; 0 qualitatively explained by Ramo's theorem.

25

♦8

12

♦ 5

1 run in 1500e, 10BC@10ke, 10V

Hit map — adapted to the customised pixel sizes

- Interpreting the pixel sensor size properly.
- Clustering is also
 accurate to take into
 account of geometries.