

Brief Summary of the γ*/Z→ee Cross-Section Measurement at Start-Up

Jeremy Werner Princeton University

LPC JTERM IV Aug 5, 2009

CMS

Intro & News

- The $\gamma^*/Z\rightarrow$ ee cross-section measurement may be one of the first analyses to come out of CMS: It is a "standard candle" analysis, critical to validating the understanding of our detector and a prerequisite for many more exotic analyses.
- The analysis for the cross-section measurement of W/Z in the electron channels at start-up went for approval in June ... and was approved!
- Both a PAS and an AN were approved:

PAS: EWK 09/004

AN: 2009/098

- The work is thorough, and the emphasis has been put squarely on robust, datadriven methods in order to optimize readiness for start-up
- Very well positioned for early data
- Author List: N. Adam, D. Bandurin, J. Berryhill, G. Daskalakis, V. Halyo, K.

Mishra, N. Rompotis, C. Seez, S. Tourneur, D. Wardrope, J. Werner

The analysis assumes 10 pb⁻¹ and $\sqrt{s} = 10 \text{ TeV}$

Main Topics

- Selection
- Systematics
- Efficiencies
- Backgrounds

Selection

- Objective: Negligible background after a loose electron ID and isolation cuts
- Use simple cut based selection incorporating robust POG recommended variables: $\sigma_{_{inin}}$, $\Delta\eta_{_{in}}$, $\Delta\phi_{_{in}}$, Tracklso, Ecallso, Hcallso
- These should be the variables that are the best modeled in the simulation at start-up
- Robust iterative optimization procedure maximizes background rejection for a given signal efficiency
- Online use the simple SingleElectron trigger

Selection (Cont.)

• 2 GSF electron candidates in fiducial region ($|\eta|$ < 2.5, but 1.4442 < $|\eta|$ <

1.56 exluded) with SC $E_{\tau} > 20$ GeV, at least one of which matches the

SingleElectron trigger candidate object

Both electron candidates pass ID and iso cuts

	EB	EE
Trk Iso	7.2	5.1
Ecal Iso	5.7	5.0
Hcal Iso	8.1	3.4
σ _{iηiη}	0.01	0.028
Δφ	not applied	not applied
Δη	0.0071	0.0066

Systematics

- At 10 pb⁻¹ the *selected* candidate yield will be ~4K events, so even already at this low integrated lumi the uncertainty is dominated by the systematics
 - Total statistical uncertainty: ~2%
- The systematics will be dominated by the luminosity measurement, which is expected to have an uncertainty at start-up of ~10%
- The only other substantial systematic uncertainty is expected to come from the (geometric and kinematic) acceptance as calculated from Monte Carlo simulation at the level of ~2.5%
- Other contributions to the systematic uncertainty will arise from the background and efficiency measurements, which are expected to be at the level of $\leq 0.5\%$ and $\leq 1\%$, respectively

Total Uncertainty
$$\simeq 2\% \Big|_{\text{stat}} \pm 2.7\% \Big|_{\text{non lumi syst}} \pm 10\% \Big|_{\text{lumi}}$$

Efficiencies

- Use a "Tag & Probe" method
- Successfully used at both Tevatron Experiments
- Basic idea is to determine the efficiency of whatever cut using an unbiased, high-purity electron sample from Z→ee decays. Then for each event we have a
 - Tag Electron: passes tight selection criteria
 - Probe Electron: passes loose selection criteria that is dependent on the cut under study

$$\varepsilon_{offline} = \varepsilon_{clustering} \times \varepsilon_{tracking} \times \varepsilon_{gsfele} \times \varepsilon_{isolation} \times \sum_{i} (f_{classification}^{i} \varepsilon_{eid}^{i})$$

Tag & Probe Efficiency Example

Tag and Probe criteria for calculating the isolation efficiency:

TAG	PROBE
A PixelMatchGsfElectron which: - is capable of passing the single electron HLT - is in fiducial ($ \eta < 1.444$ and $1.560 < \eta < 2.5$) - SuperCluster $E_T > 15$ GeV - is isolated (track isolation)	A PixelMatchGsfElectron which: - is in fiducial ($ \eta $ < 1.444 and 1.560< $ \eta $ < 2.5) - SuperCluster E_T >20 GeV

Iso eff Vs E_T (left)
 and η (right):

Backgrounds

- Objective: Development of multiple robust, data-driven methods
- Largest bkgs: ttbar and QCD dijets Still only ~1/1000 parts each in Monte
 Carlo land
- Same/Opposite Sign Method: Can leverage the fact that $q_1 \times q_2 = -1$ for signal to estimate the background
 - Use very tight cuts to get a high-purity
 sample from which to measure the q_{misid}
 - We then have $N_{sig} = (N_{os} N_{ss})/(1 2q_{misid})^2$
 - Robust and precise
 - Expected uncertainty: ~0.7-1.0 %

Backgrounds (Cont.)

- Template fitting method: Estimate the bkg under the Z peak by using the shape of a "good" discriminating variable for signal electrons
 - Possible good variables: Tracklso, calo isos, $\sigma_{_{i\eta i\eta}}$
 - Use a tight selection under the peak to get the signal template
 - Get the bkg shape from a side band with the additional requirement that $q_1 \times q_2 = +1$
 - Determine the bkg contribution from the templates using a fractional fitter
 - Robust
 - Expected uncertainty: ~2.5-3%

Conclusions

- CMS is well prepared to perform a γ*/Z→ee cross-section measurement in the early days of LHC operations
- The analysis is thorough: All major components of the measurement have been sufficiently addressed, and are well documented in notes
- The result of the full Monte Carlo exercise is $\sigma_{\gamma^*/Z} \times BR(\gamma^*/Z \rightarrow ee) = 1300 \pm 20 \text{ pb}^{-1}$

... from Monte Carlo truth we have $\sigma_{\gamma^*/Z} \times BR(\gamma^*/Z \rightarrow ee) = 1296 \text{ pb}^{-1}$

- A lot of the work done right here at the LPC
- Can invert the measurement to normalize the absolute lumi for other analyses

