

Highly extensible modular system for online monitoring of the ATLAS experiment.

Serguei Kolos (University of California Irvine) on behalf of the ATLAS TDAQ Collaboration

Outline

- The ATLAS experiment at a glance
- The Online Monitoring challenges
- The Online Monitoring system architecture and evolution
- Conclusion

The ATLAS Experiment at a glance

- ATLAS is one of the 4 big detectors at LHC, devoted to testing the predictions of the SM and searching for new physics:
 - 140M channels
 - 40 MHz output rate
- The ATLAS Trigger/DAQ system is composed of about 60'000 software processes distributed over more than 2'500 computers
- Online Monitoring is applied to:
 - Detector:
 - Dead-time, busy channels, etc.
 - Trigger system:
 - Consistency of trigger information, operational statistics
 - DAQ System:
 - Operational statistics, states of HW & SW components

The Challenges for the Online Monitoring System

- Size & Scalability:
 - Very large number of parameters to be monitored
 - It gets even bigger after upgrades
- The ATLAS experiment construction has begun more than 20 years ago:
 - The system to be monitored had unprecedented complexity
 - A spectrum of computing technologies was very limited
 - Defining requirements to the Online Monitoring system has been an iterative process
- The lifetime of the experiment spans over several decades:
 - The Monitoring system shall be easily adaptable to technologies landscape evolution
 - The Monitoring system shall be capable to benefit from the HW evolution in this period

The Monitoring System Architecture: Services and Facilities

- Monitoring services provide "monitoring front-end" for Detector & TDAQ
 - Information Sharing general purpose information sharing in distributed SW environment
 - Event Monitoring remote data access optimized for raw data sampling
 - IPC is based on CORBA standard:
 - omniORB for C++ and JacORB for Java
- Monitoring Facilities implement high level tasks:
 - Entirely based on the Services
 - Independent from one another
 - Developed gradually as requirements evolved

Operational Monitoring: Information Sharing Service

- Information Sharing (IS) is a general-purpose highly scalable distributed service based on CORBA standard
- Supports object-oriented model for information definition:
 - An information item is an instance of a class with arbitrary number of attributes
 - Any number of custom classes can be freely defined
- Is based on the client-server architecture decoupling producers and consumers of information
- Supports direct read as well as subscribe/callback information access pattern

Online Monitoring: Raw Event Sampling

Online Row Data Analysis: GNAM Framework

- GNAM is a light-weight framework for low-level raw data analysis:
 - Receives raw events via Emon interface
 - Passes the events to the custom plugin
 - The plugin analyses events and fills a custom set of histograms
 - Publishes these histograms to the IS service
- IS service has been re used for handling the second order monitoring information produced by the Monitoring Facilities

Adding Histograms Support to IS Service

- Adding histograms support to IS was as simple as:
 - Defining a set of custom classes:
 - Histogram1D, Histogram2D, Histogram3D, Profile and Graph
 - Implementing conversion functions from ROOT to IS and vice versa
- The Online Histogram Presenter (OHP) is just another client of the IS:
 - It subscribes to a configurable set of histograms and displays them as they are updated

Using Offline Algorithms for Online Monitoring

- Athena is an implementation of Gaudi framework used by ATLAS for both HLT and Offline data processing
- Using Monitoring Services Athena has been integrated with online monitoring:
 - A dedicated *ByteStreamInput* interface implementation reads events via Emon and publishes histograms to IS
- That makes the Atlantis event display available online for free

Merging Monitoring Information

- High Level Trigger (HLT) is a significant source of monitoring information:
 - Consists of about 50K processes
 - Each process produces few thousands histograms
- MonInfoGatherer a Monitoring Facility for gathering arbitrary IS information including histograms
- For scalability gathering is done in multiple levels:
 - 1. Histograms from all processes running on the same computer are merged first (*typically 24 processes per host*)
 - 2. Histograms from all computers belonging to the same rack are merged (*typically 30 hosts per rack*)
 - 3. Histograms from all racks in the Farm are merged (*typically about 40*)
- For Run II MonInfoGatherer merges ~50M histograms every minute

Speed up Statistics Acquisition

- A single event processing may take up to several seconds
- Some histograms must have O(1)K entries for reliable assessment
- An obvious solution is to run multiple event processing tasks and merge histograms they produce
 - For Run II there are ~100 monitoring jobs producing ~50K histograms each
- MonInfoGatherer has been re used for merging these histograms:
 - Reduced statistics acquiring time by a factor of 100

DQMF: Second Order Monitoring Information Provider

- Online Monitoring produces thousands of histograms:
 - Automated histogram analysis is the only feasible approach
- Data Quality Monitoring Framework (DQMF) is a Monitoring Facility that:
 - Subscribes for a pre-defined set of histograms
 - Receives histograms from IS when they are updated
 - Executes custom algorithms to analyze the histograms
 - Publishes results back to IS
- DQM Algorithms are shared by both the Offline and the Online DQ Monitoring due to the common SW infrastructure
- For Run II DQMF checks ~70K histograms every minute

Data Quality Monitoring Display

Monitoring Data Archiving

Archiving Monitoring Data

- Motivation for the monitoring data archiving:
 - Monitoring information from the past runs can be used for debugging unforeseen problems
 - Histograms can be used as references for the future runs
- Two independent facilities have been implemented for that:
 - Monitoring Data Archiver (MDA)
 - Saves pre-configured set of histograms periodically during a run as well as at the end of the run
 - Data Quality Monitoring Archiver:
 - Saves all DQM results produced for a given run

P-Beast: Save 'Em All

- Saving all monitoring data produced by the Online Monitoring system was a desire for many years:
 - It has finally became possible as computing storage and CPUs got cheaper and more powerful
- P-Beast is a recently developed Monitoring Facility:
 - Saves all online monitoring information except histograms
 - Uses in-house implementation of column-oriented data store:
 - Does data compression and eliminates duplicates on-the-fly
 - Saves data in file system cache, then transfers them to EOS
 - Receives updates at ~150 kHz rate => saves 10 billions numbers for an average data taking session

P-Beast: Displaying information in "real-time"

- Information appears in the P-Beast local storage with a few seconds delay
 - It can be used for the online displays
- Access to the information is provided via Web:
 - Customizable dashboards using Grafana open platform

The Online Monitoring System Outlook

Conclusion

- The ATLAS Online Monitoring system is very flexible and easily extendable due to its hierarchical modular architecture:
 - Open for integration with external software
- The Monitoring Services provide solid base for the Online Monitoring system implementation:
 - Backward compatibility has been always maintained
 - Have been flexible enough to satisfy any new requirement to date
- High-level facilities can be added gradually when:
 - New requirements appear
 - New technologies got available on the market
 - HW evolution turns the impossible into reality
- This approach has proven to be extremely efficient:
 - It will be maintained for the future evolution of the online monitoring software

Backup

Inter-Process Communication for the ATLAS Trigger/DAQ System

- Several technologies have been evaluated in the middle of 90-th to choose the best one for the ATLAS TDAQ system
- Based on the results of this evaluation CORBA (Common Object Request Broker) standard has been adopted:
 - The first implementations of CORBA used for the ATLAS TDAQ were ILU from Xerox company for C++ and JDK built-in CORBA broker for Java
- In 2001 the TDAQ SW has been migrated to another CORBA implementations, which have still been used:
 - omniORB for C++
 - JacORB for Java
- Migration was easy and smooth despite the fact that ILU wasn't completely CORBAcompliant:
 - That was facilitated by the 2-layers architecture as only Monitoring Services were affected

Visualizing Information: Get Access via Web

- Originally started with standalone displaying applications but the power of omni-present Web access has been quickly realized
- REST access style:
 - Each object in the Information Service is assigned a unique URL, e.g.
 - <u>https://atlasop.cern.ch/info/current/ATLAS/is/RunParams/RunParams.RunParams</u>
 - One can type this URL in the Web browser to display the given information
- WebIS Custom Python HTTP server, which acts as reverse proxy:
 - Reads requested information from IS
 - Converts information to Json and sends it back to the requestor
- Generic facility which can be used to construct complex WEB based GUIs using:
 - CSS, JavaScript, Java applets, standalone Java applications

Web Access gives a lot of flexibility for information visualization

DAQ System Status Monitor

••• /	B Web Dataflow Summary	×						
e ⇒ c	Secure https://atlase	op.cern.ch/tda	q/web_is/da	q/dfsummar	☆ 🔗			
Data-Flow	Summary	Refresh rate	e: 10 seconds	Disable flashi	ng: 🔤			
Run	LB@Run: 541@352436	8h:41m	RUNNING					
Busy	Global: 0.00 %	Dag: 0.00 %						
Trig.Keys	SMK 2714, BG 2181, PS 22027/16345 [phys 22027/16345, standby 21076/16303]							
Beams	[stable=Yes, lumi=0.00 e30, mu=0.00]							
Magnets	Solenoid 100.00 %	lenoid 100.00 % Toroid 100.00 %						
ToolTips:	Detectors RolB HLTSV	DCM SFO R EvSiz	unCtrl RunPa tes	ar GIBusy Top	Streams			
DataFlow	Busy Processing 0.0	0 %	Busy	From Output 0.00 %				
Recording								
	Rate Occup		ancy Busy/Errors					
Level1								
ROS	Hot ROS 55405.65 Hz	6.07 % Hot Robin		0.00				
L1 out				ROIB:				
HLT								
HLTSV	55152.00 Hz	21.05 %	9938 #	Reassigned: 0	ŧ			
DCM in	26234.14 MB/s	21.02 %	10088 #	TO 0 #	Err 0			
HLT PU	55377.70 Hz			Kill 0 #	Exit 0			
DCM out	1051.79 MB/s	0.00%	166 #	TO 0 #	Err 0			
SFO	12567.73 Hz 8 S	FOs, max input B	/W: 3840 MB/	S				
disk	1140.65 MB/s13223.98 Hz	3.00	%	Debug: 0.	00 Hz			
physics	948.62 MB/s 1016.58 Hz	0.00 %	сри					
express	17.07 MB/s 18.00 Hz							
calibration	160.99 MB/s 12266.98 Hz							
T0 transfer	94.37 %							
	Phys: 973873.99 B	Calib: 1843	51.75 B	Debug: 0.00 B				
Last update	d: Sun Jun 10 2018 17:	09:37 GMT+	0200 (CES	ST)				

Generic Information Browser

		opp/ioi	i ci i i			-	• ਮ 🔤
artitions	Servers for ATLAS	~	Objects for BeamSpe	ot		BeamSpot.HLTParame	ters : BeamSpotParamete
Name	Name		Name	Туре	Time	Name	Value
TLAS	BeamSpot		ByBunchMon	BeamSpotParametersBy	10/6/18 16:51:33.22	status	7
AQSlice-SR1	CSCMon		HLTParameters	BeamSpotParameters	10/6/18 14:37:41.82	posX	-0.401812374592
ventDisplays	CSCRuns		HLTParameters_no	BeamSpotParameters	10/6/18 17:06:36.55	posY	-0.989443421364
MTestPartition	CalibHisto-MDT		LiveMon	BeamSpotParameters	10/6/18 16:58:59.76	posZ	-5.65290117264
BL-DAQSlice	DDC					sigmaX	0.0103423595428
itial	DF					sigmaY	0.0107795661315
itialL1CT	DFConfig					sigmaZ	36.7077407837
LC	DF_Histogramming:HLT					tiltX	-5.05252755829e-05
C2COOL_TEST	DF_Histogramming:HLT-24:tpu-rack-16					tiltY	-6.75056580803e-05
rt_morgens_21.1.26	DF_Histogramming:HLT-24:tpu-rack-17					sigmaXY	0.0
X-DAQSIIce	DF_Histogramming:HLT-24:tpu-rack-18					posXErr	3.23205676978e-05
X-GNAM	DF_Histogramming:HLT-24:tpu-rack-19					posYErr	3.76187235815e-05
xellnfr	DF_Histogramming:HLT-24:tpu-rack-20					posZErr	0.0148859592155
λ	DF_Histogramming:HLT-24:tpu-rack-21					sigmaXErr	0.000153679371579
CTPhysics01	DF_Histogramming:HLT-24:tpu-rack-22					sigmaYErr	0.000140170945087
RT-DAQSlice	DF_Histogramming:HLT-24:tpu-rack-23					sigmaZErr	0.283218204975
	DF_Histogramming:HLT-24:tpu-rack-24					tiltXErr	5.87372369409e-06
	DF_Histogramming:HLT-24:tpu-rack-25					tiltYErr	6.64900335323e-06
	DF_Histogramming:HLT-24:tpu-rack-26					sigmaXYErr	0.0
	DF_Histogramming:HLT-24:tpu-rack-55						
	DF_Histogramming:HLT-24:tpu-rack-56						
	DF_Histogramming:HLT-24:tpu-rack-57						
	DF_Histogramming:HLT-24:tpu-rack-58						
	DF_Histogramming:HLT-24:tpu-rack-59						
	DF_Histogramming:HLT-24:tpu-rack-60						
	DF_Histogramming:HLT-24:tpu-rack-61						
	DF_Histogramming:HLT-24:tpu-rack-62						
	DF_Histogramming:HLT-24:tpu-rack-63						
	DF_Histogramming:HLT-24:tpu-rack-70						
	DF_Histogramming:HLT-24:tpu-rack-71						
	DF_Histogramming:HLT-24:tpu-rack-72						
	DF Histogramming:HLT-24:tou-rack-73						
	DF_Histogramming:HLT-24:tpu-rack-74						
	DF_Histogramming:HLT-24:tpu-rack-75						
	DF Histogramming:HLT-24:tou-rack-76						
	DF Histogramming:HLT-24:tou-rack-77						
	DF Histogramming:HLT-24-tou-rack-79						
ator Eiltor			False Files			Fairs Films	1