
N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

THE ATLAS ACCESS MANAGER POLICY BROWSER: 
STATE-OF-THE-ART WEB TECHNOLOGIES FOR A RICH 
AND INTERACTIVE DATA VISUALIZATION EXPERIENCE

Giuseppe Avolio1, Sami Perrin2, Igor Soloviev3

1 CERN, 2 Ecole polytechnique Fédérale de Lausanne, 3 University of California, Irvine

Introduction
The ATLAS experiment comprises a significant number of hardware and software resources accessed and 
operated by many users. The Access Manager (AM) implements the resources access restriction to 
reasonable levels required for the successful running of the ATLAS experiment. Given the large number of 
ATLAS users, the AM only grants resources usage permission to users according to their current duties.
The service is designed on top of the Role Based Access Control (RBAC)1 model. Every role describes a 
set of actions granted to users (rules). The rules allow login to a set of machines, to execute some 
commands with the security privileges of another user (via sudo), or to perform Trigger and Data 
Acquisition (TDAQ) system specific operations. The roles can be defined using inheritance. Every ATLAS 
user has a well-defined set of access privileges corresponding to a specific set of assigned and enabled 
roles. In total, there are several hundred roles and several thousand users.
Given the size and the complexity of the system, a tool to browse and inspect the AM configuration is 
required. We present the deployment of a new visualization tool named Policy Browser. It is the primary 
tool for role administrators to inspect all the aspects of the AM configuration via a rich web-based interface.

RBAC
The RBAC model takes the access decision for an 
individual user on the basis of the roles the user has 
in the organization. A role includes rules defining 
permissions. A permission is the right to perform an 
action on a resource.

USER ROLE RULE
action

resource

Back-end Overview

The Policy Browser is a web application exposing a 
REST2 API. The server produces data (JSON) and 
graphs (SVG) and sends them to the client that 
displays them.
The server is using Django3, a Python framework 
that follows the Model-View Controller (MVC)4 
architecture. The selection of Python was 
particularly interesting to do short prototyping 
iterations at the beginning of the project and the 
MVC architecture allowed to focus code 
development on the specific features of the project.
The client is using AngularJS5, an open source 
JavaScript framework, in conjunction with 
Bootstrap6, an open source toolkit for CSS 
development. It allowed producing a state-of-the-art 
GUI in a short time span.

Back-end Storage and Data Update

The actual AM permissions used by the system are 
stored on LDAP server. Calculations of their 
interrelations for visualization require complex 
manipulations with its data.
The first in-memory prototype resulted in a 
complicated and hardly maintainable codebase. The 
second implementation leveraged a relational 
database (SQLite8). It allowed to make the code 
more readable and to benefit from the query 
optimizer for a fast response time. Django ships with 
an Object-Relational Mapping (ORM) that 
accelerates the initial design of the schema and 
simplifies data access. A cron job periodically 
checks if the permissions have changed, and 
updates the local database accordingly.

Back-end Graph Engine

The roles are organized into an inheritance 
hierarchy reflecting different levels of users 
expertise. For a given role, it is often necessary to 
visualize its “inherits from” and “inherited by” 
graphs.
There are various ways to draw graphs. Comparing 
them objectively requires defining appropriate 
metrics. In the case of a dependency graph 
(directed acyclic), a common approach is the 
layered graph drawing (also called Sugiyama 
drawing). Ideally no edge should go upward, and 
the goal is to minimize the number of edge crossing 
for readability. As for a large graph this can be a 
costly operation, the server relies on a dedicated 
graph engine, Graphviz7, for all the graphs 
generation.

0:N

1:N 1:N 1:N

Front-End

HTML5

JavaScript

CSS

Back-End

REST
server

Graph
engine

Local
DB

AM
Config

Graphviz

Django

Front-End

styling
animation

exec()SVG

SVG

request
Django SQLite

local DB

cron
job

LDAP
AM config

Front-end Overview
The web interface consists of data panels to display 
roles, users and permissions. A tree widget 
compacts thousands of objects by few resource 
categories and subsystems. For a specific object, 
we display the list of related authorization (e.g. for a 
given command it displays a list of roles that allows 
its execution and the list of authorized users). It also 
proposes text and category filters to further help 
finding the appropriate resource.

Front-end Graph Explorer
The Graph Explorer is a tool that allows displaying 
the inheritance hierarchy. It allows browsing large 
graphs comprising many layers and hundreds of 
roles with zoom and pan. It permits easy navigation 
from role to role with a graph morphing animation. 
Lateral filters are shown in order to highlight 
subgraph and an advanced search mode allows to 
fully customize the display.

Front-end Detail Graph
The role is the key element granting permissions. A 
user may have permission granted by several roles. 
Sometimes it is required to know not only which 
resource a user is accessing, but also via which 
role. This is where the detail graph is useful. Since 
often several paths allow access to a resource, the 
detail graph is an effective way to represent this 
information.

Conclusion
The application has been deployed to the ATLAS experiment site for production. It uses live data from the 
experiment. All the initial requirements have been implemented. Performance-wise, the graph generation is 
the critical part of the API. Benchmark results show that the current implementation requires an average of 
70 ms per graph (CERN CentOS 7, i7-3770 CPU) which should not be perceptible by end users. The 
preliminary results from informal user feedback are generally very positive. They tend to indicate an 
intuitive layout and general ease of use.

References
1 RBAC https://csrc.nist.gov/Projects/Role-

BasedAccess-Control
2 REST https://www.w3.org/2001/sw/wiki/REST
3 Django https://www.djangoproject.com
4 MVC https://dl.acm.org/citation.cfm?id=50757.50759
5 AngularJS https://angularjs.org
6 Bootstrap https://getbootstrap.com
7 Graphviz https://www.graphviz.org
8 Sqlite https://www.sqlite.org


	Slide 1

