
The ToolDAQ DAQ Framework
and its uses (ANNIE, Hyper-K, E61, etc.)

Dr Benjamin Richards (b.richards@qmul.ac.uk)



ToolDAQ
ToolDAQ is an open source DAQ Framework developed in the UK.

It was deigned to incorporate the best features of other DAQ whilst:

1. Being very easy and fast to develop DAQ implementations in a very 
modular way. 

2. Including dynamic service discovery and scalable network 
infrastructure to allow its use on large scale experiments.

Features
• Pure C++
• Fast Development
• Very Lightweight
• Modular 
• Highly Customisable / Hot swappable modules
• Scalable (built in service discovery and control)

• Fault tolerant (dynamic connectivity, discovery, 
message caching)

• Underlying transport mechanisms ZMQ 
(Multilanguage Bindings)

• JSON formatted message passing
• Few external dependencies (Boost, ZMQ)

2CHEP 2018 



How It Works: Structure / Nomenclature

Tool = Modular classes that make up your program

ToolChain = Class that holds the modular Tools

Dynamic simpe ascii files determin which tools to run without compilation in which 
order. Similarly dynamic variables can be sent to each via simple acii files

Tool 1

ToolChain

Tool 2 Tool 3

CHEP 2018 
3



How It Works: Structure / Nomenclature

Tool = Modular classes that make up your program

ToolChain = Class that holds the modular Tools

DataModel = Shared / transient data class. Any object/variable/instance in 
the DataModel class is shared between all tools

DataModel

Tool 1

ToolChain

Tool 2 Tool 3

CHEP 2018 
4



Operation

ToolDAQ works by Initialising, Executing and Finalising each tool 
sequentially  

Initialise: (use to initialise variables, create data structures, open files)

Execute: (use to perform the operation on data, either one entry or all)

Finalise: (use to close files, delete and clean up)

Tool 1:
Initialise

Tool 2:
Initialise

Tool 3:
Initialise

Tool 1:
Execute

Tool 2:
Execute

Tool 3:
Execute

Tool 1:
Finalise

Tool 2:
Finalise

Tool 3:
Finalise

Times
X

CHEP 2018 

5



Tool 2

Tools

DataModel

Tool 1

ToolChain

Tool 2 Tool 3

Tool 1

ToolChain

Tool 2 Tool 3

Tool 1
(Thread 0)

Thread 1

Thread 2

Thread 3 Socket 
Communication

CHEP 2018 

6



ToolDAQ in Detail

All Users need do is write their own modular Tools 
for hardware control and data processing while 
under the hood the software provides a powerful 
set of features out of the box.

• Three execution modes (Interactive, Inline and 
Remote)

• Built in distributed Network DAQ control 
through command line or Web Interface

• Built in Dynamic Service Discovery and 
Publishing

• Remote or Local Logging modes

• Simple threaded scalable Fault tolerant NtoN
Networking technology provided by ZMQ

• Configuration file tools using a universal data 
storage class

And more…

CHEP 2018 7



Control

• Each ToolChain can be run in three modes (determined by asci config
file)
• Interactive: Console command based control (start stop status pause execute 

initialise etc.)

• Inline: Fixed or dynamic execution cycles

• Remote: Remote over network commands (JSON)

• Remote Control  can be achieved by:
• Console based program

• Web interface

CHEP 2018 8



Dynamic Service Discovery

The core Framework has multiple threads that run both in the 
ToolChains and NodeDaemons that take care of all the control systems, 
service discovery, etc…

Dynamic service discovery lets every single Node 
Daemon, ToolChain and service know about each 
other via use of multicast beacons.

This is how remote control is achieved anywhere 
on the network

Node

Node Node Node

NodeNode

Multicast

[ UUID, Name , IP,  Service, Port, Status, Timestamp ] 

CHEP 2018 9



Distributed Node Management & Hot Swapping
Most DAQ systems will require multiple distributed nodes

Each can have multiple ToolChains running on them

So ToolDAQ has a node control and monitoring system

Node

Node Daemon

ToolChain 1

ToolChain 2

ToolChain 3

Node

Node

Node

Node

Node

Node

Node

Node

And allows connections and data flow to rerouted 
dynamically allowing for hot swapping

Multicast

TCP

CHEP 2018 
10



Fault Tolerance And Error Correcting

• ToolDAQ makes use of 
ZMQ to provide a fault 
tolerant scalable 
messaging 

• Use of ZMQ, message 
buffering and Service 
discovery allows for 
creation of DAQ that can 
not just be fault tolerant 
but handle errors.

Simple Difficult

None Fault 
Tolerant

Error 
Handling

Difficulty

Network Error behaviour

CHEP 2018 11



Logging And Monitoring

• Facilities exist for Logging both locally on 
each node and centrally via a network

• Also Monitoring of both each nodes 
NodeDaemon, ToolChains and services status 
is included with the framework

• Monitoring of data flow, data quality and 
other phyiscs plots can also be achieved via 
the Webpage and a seperate ToolChain for 
monitoring

CHEP 2018 12



Store

ToolDAQ comes with two universal 
storage classes.
• These act like maps where the value 

can be of any type within the same 
object.

• Anything can be stored from basic 
types, stl containers and custom 
classes

• These stores are serialisable (ascii, 
binary and json) and portable  

• They can also be used for multi 
event storage similar to a TTree

Key Value

“Val1” 467.4

“Val2” 234.56

“Val3” 235.623

Key Value

“Val1” “Hello world”

“Val2” 234.356

“Val3” MyClass

“Val4” std::vector<float>

Standard std::map

Store

CHEP 2018 13



Easy Installation, Tool Sharing And Docker

• The software is all open source and hosted on GitHub

• There are installation scripts to install the software and all 
dependencies

• As well as docker images of tagged builds and the latest branches

• Due to the modular nature Tools developed for one application can 
be shared between others. Meaning that the library of available tools 
keeps growing adding fuctionality

CHEP 2018 14



Where It’s Being Used

• ANNIE (~200 PMTs)

• Intermediate Water Cherenkov (~7,500 PMTs [365 MPMTs])

• Hyper-K (~40,000 PMTs)

• Hardware test stands 

Discussing development for:

• WATCHMAN

• ND280

• SNO+

CHEP 2018 15



ANNIE

• Multiple asynchronous data 
sources MRD, Veto, PMTs 
LAPPDs 
• ADC Koto Boards
• Camac TDC
• PSec LAPPDs
• Trigger stream

• Fault tolerant
• Flexible to changes in data and 

trigger

• Also used for 
analysis/reconstruction

Slack 
output

Postgre
SQL

Trigger
Network 
Receive 

Data
Monitor

Data 
Recorder

VME 
Trigger 
Sender

Board 
Reader

Network 
Send Data

Trigger Lecroy

Postgre
SQL

Server

File on 
Disk

VME ToolChain

MRD ToolChain

Main DAQ ToolChain

MRDHV
Input 

Variables

VME 
Trigger 
Sender

Board 
Reader

Network 
Send Data

VME ToolChain

Lecroy

Trigger Lecroy Root 
output

LecroyLecroy

Data sync

Monitor
Receive 

Data

Trigger Lecroy Root 
output

LecroyLecroy Data 
Calibrate

Plot 
Producer

Monitor ToolChain

PSEC

Trigger output
PSEC 

Reader

PSEC ToolChain

CHEP 2018 16



Hyper-K

• Larger Beast
• 40,000 channels
• 2000 FEEs
• 150 computing nodes
• Dead timeless
• Separate GPU Trigger farm
• Readout buffering 
• Event Building

• Self maintaining

• Highly fault tolerant

• Also starting to use ToolFrame work for 
simulated triggering

TPU

TPU

SN TPU

Broker

EBUEBU

Broker

FEE

FEE

FEE

sw
it

ch

RBU

FEE

FEE

FEE

sw
it

ch

RBU

Offsite 
backup/ 
processing

Run control / 
monitoring

SN TPU

Node finder
Broker Trigger 

Sorter

Processor Thread

TPU Sender

Job distributor

Decision Sender

Negative trigger 
decisions sender

Decision processor

EBU trigger decisions 
sender

Fake decisionFake decisionFake decisionFake decisionFake decisionTPU communicator

RBU TPU EBU 
Master/Slave Thread

finder

1) Node finder Thread 
updates/ maintains 
connections to TPUs RBUs 
EBUs adding new ones 
when they appear and 
updating lists

It also maintains master 
slave relationship between 
brokers

3) Generates trigger job 
windows based on 
timestamp

(if external SN trigger) 
makes job window of 
snwatch window and 
triggers SN mode

(not sure if need a 
separate thread for this)

Run control / 
possible run 

finder from sql

2) Activates run turn on 
and off, also possibly 
finds and distributes 
run number (initialise 
only with listening for 
run start stop on 
execute with noblock

(external SN mode 
trigger) receive SN 
watch messages

4) Jobs are distributed to next available TPU in 
order and results in sibtreads posted to an 
output list

(SN mode) no longer distribute job windows as 
handed over to EBU.
Also possibly dedicated SN TPU for continuous 
Nhits search.

5) Based on trigger ouput
list messages are either 
sent to Available EBU list 
(same sas tpu with 
conformation) or if SN 
trigger SN mode. 
Where job windows 
distributed to EBU

CHEP 2018 
17



Summary

• ToolDAQ is lightweight and highly scalable DAQ framework

• It allows for dynamic service discover reconfiguration and high fault 
tolerance

• It’s currently being employed by a few experiments. With a few more 
exploring its use

• The library of Tools is growing constantly

• Please check out the code and contact me if your interested 
(b.richards@qmul.ac.uk) CHEP 2018 18


