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Introduction

● Boosted Decision Trees (BDTs) are multivariate classifiers popular in 
offline reconstruction and analysis

● More effective than simple cuts
● BDTs could be used in hardware triggers to improve object / event 

identification
– Train offline, classify online

– e.g. regression BDT assigns pT in current CMS endcap muon trigger from large 
Look Up Table (J.F. Low, Boosted Decision Trees in the CMS Level-1 Endcap Muon Trigger, TWEPP-17)

● Seek a generic low latency implementation of BDT inference
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Decision Tree Inference

● Input feature vector x
● Compare a feature with 

threshold, follow decision 
path

● In DT final leaf gives class 
prediction

● In BDT final leaf gives tree 
score in ensemble

Classify green/orange from features x

eg, x = [0.7, 1.2, 15.0, 1.0]

✔

✘

✔

h(x) = 1.04
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Boosted Decision Tree Inference

● Predict class of input using ensemble of decision trees
● F(x) = k + ∑i wihi(x)

● Score F is sum over weighted (w) scores of weak learners 
(decision trees), h

● Each h is independent → opportunity for parallelism
● An ensemble of weak learners makes a strong one

+ + ...
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FPGA Implementation – Decision Tree

● Target lowest latency: unroll everything
● Do all node comparisons in parallel
● Represent each leaf with a boolean: 

True if decision path reaches leaf, False 
otherwise (only one leaf can be True)
– Boolean combination of comparison 

results
● Use leaf bits to address table of values 

(small lookup)
● Fully pipelined (new data every clock)

Dataflow
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FPGA Implementation - BDT

● Target lowest latency: unroll 
everything

● Fanout input features to trees through 
layers of registers
– For faster clock

● Execute all trees in parallel
● Perform sum of scores with balanced 

adder tree
● Output score
● Fully pipelined (new data every clock)

tree1tree0 tree
2 treen...

x[0] x[1] ... x[i]

registers

+

Add tree

score

+

Dataflow
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FPGA implementation - overview

● Train and export ensemble with ML library on standard hardware (scikit-learn on a 
PC here)

● Specify data formats: fixed-/floating-point types
● MaxCompiler project reads saved ensemble and generates:

– VHDL / netlist for integration into bigger project (e.g. L1 Trigger)
– .max file for execution on Maxeler hardware (e.g. acceleration)

● Execute class prediction on FPGA

+ + ...
+

ML Library
scikit-learn

(xgboost, TMVA...)

Train & export MaxCompiler
Conversion

netlist / .max file 
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Implementation Validation

● Validate with randomly 
generated, separable, 
dataset with 2 classes 
(red, blue) and 2 features

● Train BDT with scikit-learn
● Measure class predictions 

from FPGA and CPU 
(scikit-learn)

● Same results  ✓
Points are training data, shading is class 
prediction for finely sampled mesh 
(separately for each architecture)
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Vital statistics

● BDT with 100 tress, max depth 3
● Algorithm latency: 12clks, 30ns @ 400 MHz

– Pipelining means classification rate is 400 MHz

● Tested at 400 MHz on Stratix V (should go faster on newest chips)
● Post synthesis resource usage for some popular Xilinx chips, and scaling:

Device Virtex 7 690 Kintex Ultrascale 115 Virtex Ultrascale 9+

LUTs (%) 2.24 1.46 0.82

Registers (%) 1.15 0.75 0.42

Parameter nTrees maxDepth nFeatures

Latency log(n) (score sum) n -

Resources n (tree & add) 2n -
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Hyperparameter Tuning

● Scaling shown on previous slide gives model 
for resources & latency relative to reference:

● n trees (nref = 100), depth d (dref = 3)

● R resources, L latency
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Acceleration - setup

● Using Intel Xeon CPU & 1 Maxeler 
“Maia” card in MPC-X
– Connected via infiniband & PCIe switch
– Altera Stratix V FPGA

● Train 100 trees, depth 3, 2 random 
features

● Generate random feature vectors
● Classify either on CPU (python, scikit-

learn, single threaded) or FPGA
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Acceleration - results

● Latency penalty to transfer 
data host  FPGA  host→ →

● For sample sizes  100, ≳
FPGA is faster

● Up to 600x speedup for 
large samples

● FPGA classification rate 
limited at IO bandwidth
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Conclusion

● Presented fast BDT inference for real-time applications
– Low latency: ~30 ns

●  Suitable for hardware triggers

– High throughput: ~ 400 x 106 classifications s-1

● suitable for compute acceleration on Maxeler Dataflow Engines

● Maxeler : http://maxeler.com/
● MaxCompiler BDT: https://github.com/thesps/MaxBDT

http://maxeler.com/
https://github.com/thesps/MaxBDT
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Application – CMS Level 1 Track Trigger

● Reconstructing tracks at Level 1 for 
HL-LHC
– Tracks with pT > 2-3 GeV

– Latency < 4μs
– New event every 25ns

● 20% of tracks in tt + 200 pileup are 
fake
– Degrades performance of, e.g., 

vertexing, track MET
● Classify tracks as genuine/fake using 

reconstructed track parameters
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