
Fast Boosted Decision Tree inference on FPGAs
for triggering at the LHC

CHEP 2018
Sioni Summers

Fast BDTs on FPGAs - Sioni Summers 2

Contents

● Boosted Decision Tree inference
● FPGA implementation
● Performance
● Accelerating BDT inference

Fast BDTs on FPGAs - Sioni Summers 3

Introduction

● Boosted Decision Trees (BDTs) are multivariate classifiers popular in
offline reconstruction and analysis

● More effective than simple cuts
● BDTs could be used in hardware triggers to improve object / event

identification
– Train offline, classify online

– e.g. regression BDT assigns pT in current CMS endcap muon trigger from large
Look Up Table (J.F. Low, Boosted Decision Trees in the CMS Level-1 Endcap Muon Trigger, TWEPP-17)

● Seek a generic low latency implementation of BDT inference

Fast BDTs on FPGAs - Sioni Summers 4

Decision Tree Inference

● Input feature vector x
● Compare a feature with

threshold, follow decision
path

● In DT final leaf gives class
prediction

● In BDT final leaf gives tree
score in ensemble

Classify green/orange from features x

eg, x = [0.7, 1.2, 15.0, 1.0]

✔

✘

✔

h(x) = 1.04

Fast BDTs on FPGAs - Sioni Summers 5

Boosted Decision Tree Inference

● Predict class of input using ensemble of decision trees
● F(x) = k + ∑i wihi(x)

● Score F is sum over weighted (w) scores of weak learners
(decision trees), h

● Each h is independent → opportunity for parallelism
● An ensemble of weak learners makes a strong one

+ + ...

Fast BDTs on FPGAs - Sioni Summers 6

FPGA Implementation – Decision Tree

● Target lowest latency: unroll everything
● Do all node comparisons in parallel
● Represent each leaf with a boolean:

True if decision path reaches leaf, False
otherwise (only one leaf can be True)
– Boolean combination of comparison

results
● Use leaf bits to address table of values

(small lookup)
● Fully pipelined (new data every clock)

Dataflow

Fast BDTs on FPGAs - Sioni Summers 7

FPGA Implementation – Decision Tree

● Target lowest latency: unroll everything
● Do all node comparisons in parallel
● Represent each leaf with a boolean:

True if decision path reaches leaf, False
otherwise (only one leaf can be True)
– Boolean combination of comparison

results
● Use leaf bits to address table of values

(small lookup)
● Fully pipelined (new data every clock)

Dataflow

Fast BDTs on FPGAs - Sioni Summers 8

FPGA Implementation - BDT

● Target lowest latency: unroll
everything

● Fanout input features to trees through
layers of registers
– For faster clock

● Execute all trees in parallel
● Perform sum of scores with balanced

adder tree
● Output score
● Fully pipelined (new data every clock)

tree1tree0 tree
2 treen...

x[0] x[1] ... x[i]

registers

+

Add tree

score

+

Dataflow

Fast BDTs on FPGAs - Sioni Summers 9

FPGA Implementation - BDT

● Target lowest latency: unroll
everything

● Fanout input features to trees through
layers of registers
– For faster clock

● Execute all trees in parallel
● Perform sum of scores with balanced

adder tree
● Output score
● Fully pipelined (new data every clock)

tree1tree0 tree
2 treen...

x[0] x[1] ... x[i]

registers

+

Add tree reduce

score

+

Dataflow

Fast BDTs on FPGAs - Sioni Summers 10

FPGA implementation - overview

● Train and export ensemble with ML library on standard hardware (scikit-learn on a
PC here)

● Specify data formats: fixed-/floating-point types
● MaxCompiler project reads saved ensemble and generates:

– VHDL / netlist for integration into bigger project (e.g. L1 Trigger)
– .max file for execution on Maxeler hardware (e.g. acceleration)

● Execute class prediction on FPGA

+ + ...
+

ML Library
scikit-learn

(xgboost, TMVA...)

Train & export MaxCompiler
Conversion

netlist / .max file

Fast BDTs on FPGAs - Sioni Summers 11

Implementation Validation

● Validate with randomly
generated, separable,
dataset with 2 classes
(red, blue) and 2 features

● Train BDT with scikit-learn
● Measure class predictions

from FPGA and CPU
(scikit-learn)

● Same results ✓
Points are training data, shading is class
prediction for finely sampled mesh
(separately for each architecture)

Fast BDTs on FPGAs - Sioni Summers 12

Vital statistics

● BDT with 100 tress, max depth 3
● Algorithm latency: 12clks, 30ns @ 400 MHz

– Pipelining means classification rate is 400 MHz

● Tested at 400 MHz on Stratix V (should go faster on newest chips)
● Post synthesis resource usage for some popular Xilinx chips, and scaling:

Device Virtex 7 690 Kintex Ultrascale 115 Virtex Ultrascale 9+

LUTs (%) 2.24 1.46 0.82

Registers (%) 1.15 0.75 0.42

Parameter nTrees maxDepth nFeatures

Latency log(n) (score sum) n -

Resources n (tree & add) 2n -

Fast BDTs on FPGAs - Sioni Summers 13

Hyperparameter Tuning

● Scaling shown on previous slide gives model
for resources & latency relative to reference:

● n trees (nref = 100), depth d (dref = 3)

● R resources, L latency

Fast BDTs on FPGAs - Sioni Summers 14

Acceleration - setup

● Using Intel Xeon CPU & 1 Maxeler
“Maia” card in MPC-X
– Connected via infiniband & PCIe switch
– Altera Stratix V FPGA

● Train 100 trees, depth 3, 2 random
features

● Generate random feature vectors
● Classify either on CPU (python, scikit-

learn, single threaded) or FPGA

Fast BDTs on FPGAs - Sioni Summers 15

Acceleration - results

● Latency penalty to transfer
data host FPGA host→ →

● For sample sizes 100, ≳
FPGA is faster

● Up to 600x speedup for
large samples

● FPGA classification rate
limited at IO bandwidth

Fast BDTs on FPGAs - Sioni Summers 16

Conclusion

● Presented fast BDT inference for real-time applications
– Low latency: ~30 ns

● Suitable for hardware triggers

– High throughput: ~ 400 x 106 classifications s-1

● suitable for compute acceleration on Maxeler Dataflow Engines

● Maxeler : http://maxeler.com/
● MaxCompiler BDT: https://github.com/thesps/MaxBDT

http://maxeler.com/
https://github.com/thesps/MaxBDT

BDTs on FPGAs - Sioni Summers 17

Application – CMS Level 1 Track Trigger

● Reconstructing tracks at Level 1 for
HL-LHC
– Tracks with pT > 2-3 GeV

– Latency < 4μs
– New event every 25ns

● 20% of tracks in tt + 200 pileup are
fake
– Degrades performance of, e.g.,

vertexing, track MET
● Classify tracks as genuine/fake using

reconstructed track parameters

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

