The ATLAS Muon Trigger Performance in Run-2 in the ATLAS experiment

CHEP2018, 9-13 July, 2018 Sofia in Bulgaria
Shota Hayashida (Nagoya University) on behalf of the ATLAS Collaboration

1. Abstract

Events containing muons in the final state are an important signature for many analyses being carried out at the Large Hadron Collider (LHC), including both the standard model and new physics searches. To be able to study such events, it is required to have an efficient and well understood muon trigger. Due to high luminosity and pileup conditions in Run-2, several improvements have been implemented to keep the trigger rate low while still maintaining a high efficiency. This poster presents an overview of the algorithm improvements of the ATLAS muon trigger and its performances in 2018 data taking.

2. The ATLAS muon system

The ATLAS muon system consists of four kinds of sub-detectors with different purposes.
- **RPC (Resistive Plate Chamber)**
 - Covering barrel region
 - Fast responding detectors
 - Used for hardware trigger (L1).
- **TGC (Thin Gap Chamber)**
 - Covering endcap region
 - Fast responding detectors
 - Used for software trigger (HLT) and offline muon reconstruction.

They have high resolutions and provide precise track information.

- **MTD (Monitored Drift Chamber)**
- **CSC (Cathode Strip Chamber)**

3. The ATLAS muon trigger

The ATLAS trigger is designed as a two-staged system.
- **Level-1 (L1) muon trigger**
 - Primary threshold \(p_T > 10 \) GeV for high \(p_T \) triggers
 - Output rate 1 kHz at instantaneous luminosity of \(2 \times 10^{34} \) cm\(^{-2}\)s\(^{-1}\).
- **High Level Muon Trigger**
 - Primary threshold \(p_T > 26 \) GeV with isolation
 - Output rate 250 Hz at 2e34.

- Fast muon reconstruction step
 - with fast tracking in ROIl (Region of Interest).
- Precise muon reconstruction step
 - with precise tracking (exploiting algorithms close to offline muon reconstruction).

4. Improvement at L1 trigger for Run-2 data taking ~ EI/FI coincidence ~

In Run-1, L1 muon rates in the forward region were polluted by low-\(p_T \) charged particles (protons) from out of Interaction Point (IP), resulting in significant rate increase. In Run-2, coincidences with inner muon chamber placed before the toroid magnet are used to discard these fake candidates.

Most of the fake charged particles are low-\(p_T \) protons originating from beam background.

- Suppress it with the inner muon chamber (EI/FI).
- EI/FI coincidence (New)
 - (Further with the extended barrel region of the Tile Calorimeter)

5. Recent improvement at HLT for the 2018 data taking ~ Muon Isolation ~

Isolated muon trigger with \(p_T \) threshold 26 GeV (mu26_iwarmedium) is primary used for wide range of physics analyses in ATLAS. In 2017 with very high pileup environment a drop in efficiency was observed.

- **Cause of efficiency loss**: Muon isolation requirement \(d\chi < 6 \) mm.
- **Solution for 2018 data taking**: Loosen requirement with \(d\chi \)
 - 2017 configuration : \(d\chi < 6 \) mm
 - 2018 configuration : \(d\chi < 2 \) mm (New)

The efficiency is recovered at pileup=60 in 2018 data!
A small rate increase is caused mainly by low \(p_T \) muons close to the thresholds.

The increase is acceptably low.

The selection \(d\chi < 2 \) mm in isolated muon trigger has good performance for the 2018 data taking.

6. Efficiency measurement in 2018 data

The muon trigger efficiency is measured using a tag-and-probe method with \(Z \rightarrow \mu \mu \).

- **Barrel region** \(|\eta| < 1.05 \)
- **Endcap region** \(1.05 < |\eta| < 2.4 \)

The ATLAS muon trigger has very good efficiencies both at Level-1 and High Level Trigger.

Ready for the luminosity production year 2018.

7. Summary

Several improvements were implemented in muon trigger system to cope with high luminosities and pileup. We are ready with excellent performance for the luminosity production year 2018.