Algorithms for Online Tracking in PANDA CHEP 2018

10.7.2018TOBIAS STOCKMANNS

Boundary Conditions

Time difference between two events

- No time structure
 in beam
- Up to 20 MHz interaction rate
- Online tracking and event selection

< 10 tracks / event

• Mainly p, π, K, e, μ

Simulated Events

MVD

- 4 barrel layers
- 6 disks
- Mixed pixels / strips
- 3D space points
- < 30 µm point resolution< 10 ns time resolution

Time series of MVD and STT detector signals in PANDA (view along beam axis)

STT

- ~ 4000 straws •
- Dense packaging
- < 150 µm resolution Isochrones
- 250 ns drift time •
- 2D space point
- No start time

Triplet Finder

- Find 2 out of 3 combinations of hits in pivot layers and primary vertex
- Calculate circle
- Add hits in other layers by distance to circle
- Straight line fit for z-component
- Select track candidates by number of hits

- + Simple algorithm
- + No fitting needed
- No isochrone information
- Limited on primary tracks
- Optimized for GPUs together with Nvidia Application Lab

Marius Mertens(FZJ), Andrew Adinetz(FZJ), Andreas Herten(FZJ)

- Non-bunched: packages of single events send
- Bunched: Fixed time bunch with many events

Cell Track Finder

- Find (unambiguous) neighbours with hits → generates tracklets
- Find connections between tracklets
- Fit connected tracklets and take best matching one (Circle fit via Riemann Surface)
- Add the ambiguous hits
- Correct for isochrones
- Straight line fit for z-component

- + All hits processed at once
- + Primary and secondary tracks
- + Generall clustering algorithm
- Isochrone information in an additional stage
- Only suitable for STT
- Optimized for GPU

Jette Schumann (FZJ), Walter Anderson (Uppsala), Jenny Regina (Uppsala)

Process neighbourhood relations (EvaluateState & EvaluateMultiStates)

Version	Runtime per event	Ratio of CPU Time	
CPU	4.56 ms	100 %	
GPU (algorithm)	0.575 ms	12.08 %	
GPU (+ event)	0.045 ms	0.94 %	

Circle Hough

panda

- Calculate for all hits all circles through origin which are tangent to isochrone
- Fill x, y coordinate of circle center into histogram
- Find peaks
- Straight line fit for z-component

- + All hits in parallel
- + Isochrone information naturally in
- + Works for STT and MVD
- Limited on primary tracks

Andreas Herten (FZJ), Ludovico Bianchi (FZJ)

Pair Circle Hough

JÜLICH

Forschungszentrum

•

Circle Hough

Forschungszentrum

Pair Circle Hough

Forschungszentrum

Track Finding on FPGA

• Road Finding

• Circle Fitting

 $E^2 = \sum (x_i^2 + y_i^2 + a x_i + b y_i + c)^2 (1/d_i)^2$

• Straight Line Fitting

 $E^2 = \sum (\Phi_i + kz_i + \Phi_0)^2 (1/d_i)^2$

- + Hits processed sequentially
- + Isochrone information used
- + T0 extraction possible
- Only suitable for STT
- Optimized for FPGA

Performance

- Efficiency > 90 %
- σ_{pt} : ~ 3.2% σ_{pz} : ~ 4.2%.
- 7 µs/event (6 tracks)
- Tracking strategy in case of missing T0.

Summary

- Tracking in PANDA challenging
- Several different algorithms exists in different states of maturity
- No best candidate obvious
- Common test environment finished
- Next steps:
 - Finalize the algorithms
 - Test all on common data sample
 - Chain or combine algorithms
 - Machine Learning as alternative?

Backup Slides

Mitglied der Helmholtz-Gemeinschaft

Circle Hough

T0 determination

T0 shift = $\Sigma di / N$ / const (N: number of hits di: signed distance of circle to track)

T0 shifted by:	Extracted T0:
-50 ns:	-47.0±4.0 ns
-20 ns:	-19.8±2.1 ns
10 ns:	9.4±2.5 ns
20 ns:	19.0±2.3 ns

Tracking Algorithm -- Road Finding

Hit: Seg_ID (3 bits) + LayerID (5 bits) + Tube_ID (6 bits) + Arrival time

1: Start from inner layer

- ✓ Boundary between two segments.
- 2: Attach neighbour hit to tracklet layer by layer 🖌 Number of neighbor:

Mitglied der Helmholtz-Gemeinschaft

Tracking Algorithm -- helix parameters calculation

Known : x_i , y_i , d_i

Question: To determine a circle,

$$x^2 + y^2 + ax + by + c = 0$$

Method: Minimize the equation $E^2 = \sum (x_i^2 + y_i^2 + a x_i + b y_i + c)^2 (1/d_i)^2$

1) Circle para.

$$\begin{pmatrix} S_{xx} & S_{xy} & S_{x} \\ S_{xy} & S_{yy} & S_{y} \\ S_{x} & S_{y} & N \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -S_{xxx} - S_{xyy} \\ -S_{xxy} - S_{yyy} \\ -S_{xx} - S_{yy} \end{pmatrix} \qquad \begin{array}{l} S_{x} = \sum xi \\ S_{xx} = \sum xixi \\ S_{xxx} = \sum xixii \\ S_{xx} = \sum xixii \\ S_{x$$

Track quality.
$$\chi^2 = 1/n \times \sum_i \frac{(x_i^2 + ax_i + y_i^2 + by_i)/2r^2}{d_i^2}$$

. . .

. . .

. . .

2)

Pz reconstruction

Known : zi, Φ i, di Question: To determine a line, $\Phi + kz + \Phi_0 = 0$

Method: Minimize $E^2 = \sum (\Phi_i + kz_i + \Phi_0)^2 (1/d_i)^2$

$$\begin{pmatrix} S_{zz} & S_z \\ S_z & 1 \end{pmatrix} \begin{pmatrix} k \\ \phi_0 \end{pmatrix} = \begin{pmatrix} -S_{\phi z} \\ -S_{\phi} \end{pmatrix}$$

Extract To from Tracking

JÜLICH Forschungszentrum

Performance at FPGA

Device Utilization Summary			
Logic Utilization	Used	Available	Utilization
Number of Slice Flip Flops	25,022	50,560	49%
DCM autocalibration logic	14	25,022	1%
Number of 4 input LUTs	33,120	50,560	65%
DCM autocalibration logic	8	33,120	1%
Number of occupied Slices	21,563	25,280	85%
Number of FIFO16/RAMB16s	148	232	63%
Number used as RAMB16s	148		
Number of DSP48s	124	128	96%

For one event with 100 hits (6 tracks): $7 \mu s$

Performance test

Forschungszentrum

Summary and Outlook

Forschungszentrum

- $\blacktriangleright \quad \sigma_pt: ~~ 3.2\% \quad \sigma_pz: ~~ 4.2\% \ .$
- \geq 7 µs/event (6 tracks)
- ➤ Tracking strategy in case of W/O T0.

