
A Web-based control and monitoring system
for DAQ applications

Alexey Anisenkov (BINP)
Ivan Logashenko (BINP)

Daniil Zhadan (BINP)

CHEP 2018, Bulgaria, 9 July 2018

Outline

2

• The Role of monitoring in Online Computing/DAQ
(Why do we need central monitoring tools?)

• Involved Experiments (CMD-3, Muon g-2, MRT)

• Architecture Overview (Web-based approach)

• Components of the system

Alexey Anisenkov, CHEP-2018

Role of monitoring tools in DAQ
Slow Control and monitoring system is a vital part of any HEP experiment

• Monitor the status of DAQ and DAQ hardware

• Monitor physical and environmental conditions

• Control the quality of data taken

• Control and operate hardware equipments

• Guarantee safety and correct functioning of whole system

3
Alexey Anisenkov, CHEP-2018

• e+ e- collider VEPP-2000 at BINP (Novosibirsk)
• 7 detector’s subsystems + cryo, gases, HV, LV
• ~ O(1000) environmental sensors
• ~ O(100) monitoring histos, data quality plots

CMD-3 Experiment
The system discussed in the talk was developed for CMD-3 detector

4

Typical small-to-medium scale HEP experiment

• 60 authors
• 10k event size,

1kHz FLT rate
Alexey Anisenkov, CHEP-2018

Basic considerations

5

Key requirements for the monitoring system:

• Independent of particular experiment
 (as much as possible)

• Modular structure

• web-based approach

Thanks to the modular approach,
parts of the system are used at two other experiments:

• Muon G-2 (250 authors)
• Larger than CMD-3,

 but same scale

• BINP MRT
(X-ray tomography)

• Smaller,
measurement station

BINP

Alexey Anisenkov, CHEP-2018

Basic sources of monitoring data
During the operations DAQ and related systems produce

a lot of information for experts and people on shift
that need to be monitored and taken into account

6

Direct read-out of
front-end electronics
(crates, subsystems)

DAQ
status

metrics

Nearline data
processing

Online Data quality
metrics

Slow Control
software sensors

Offline Data quality
metrics

Centralized
Slow control

hardware sensors

Archived Slow
Control data

Subsystems
monitoring
channels

Slow control Online DAQ

Run
Log

Offline Reconstruction

Alexey Anisenkov, CHEP-2018

Key goals of high level monitoring system

We need a unified and user-friendly access to diverse pool of
monitoring/control data:

• Access to real-time and archived data

• Different focus for shifters and experts

• Possibility to control detector subsystems

• Various helpers (data highlighting)

• Physicist should be able to extend the interface
(min knowledge in programming)

7
Web-based approach meets well our goals

Alexey Anisenkov, CHEP-2018

System architecture:
Why a web-based approach?

Modern Web technologies offer a big set of advantages and ready to use
components out of the box.

Client-server architecture

• scalability and reliability
• extensibility (easy integration of experiment specific tools)
• hide direct dependency with front-end electronics and

data sources

Web application

• cross platform compatibility (no dependency to client OS)
• accessible anywhere (can be even used remotely outside

control room)
• cost effective and rapid development (thanks to Python,

Django, and plenty of open-source web packages)
• easy customizable (CMS-like approach to edit pages) 8

Alexey Anisenkov, CHEP-2018

Sidenote: MIDAS as core platform
for DAQ & SC at CMD-3

9

MIDAS is a rich data acquisition software developed at PSI and at TRIUMF

• Includes native Web Interface
(mhttpd)

• Provides Online database (ODB)
with tree-based structure

• Uses shared-memory Buffer for
event collection and distribution

• Supports ROOT analyzers for
online data monitoring
(produces histograms)

• Frontend acquisition code written
in C/C++

At CMD-3 we extended MIDAS API by implementing python library (pymidas)
to access ODB and Buffer modules. PyMidas has allowed to apply easy
integration with our DAQ services and in particular with web applications.

Alexey Anisenkov, CHEP-2018

Architecture overview

10

MIDAS
(mhttpd)

Web Server

 Slow
Control DB

SC
frontends
(MIDAS)

Apache

Run DB

Online
Histograms

Offline
Histograms

DAQ
(MIDAS)

Offline
Analysis

ODB

Browser

Data sources
DAQ services

Equipment
DB

pymidas

Frontend
scripts

Shift
Schedule

Custom
Monitoring
services

Trend data

Online
Analysis

(analyzer)

Remote script
execution,
direct read out data

Access to
required
DB/sources

 + REST API
to fetch

monitoring
data

Web applications (Django, python, Bootstrap)

plots datatablesrunlog templatesadmin

scriptplots slowplots trendplotsslowsensors

g2calo g2utca nearlinelog runfieldlog

Core:

CMD-3

G-2:

...

...

...

syslog scriptsauth task runinfo

Alexey Anisenkov, CHEP-2018

Implementation details: Web2.0

11

• Apache/WSGI + Python + Django
framework as server backend

• Independent database backends
(PostgreSQL, MySQL, etc)

• Web Services technologies
(REST API, WebUI, widgets)

• Bootstrap framework as
HTML/CSS/JS client frontend
(responsive, interactive, mobile-friendly)

• Client AJAX, JQuery plugins, own
widgets, HTML5 vector graphics
 (datatables, treeview, calendar..)

• Plugin based approach
(shareable applications in “core”
re-used by many components)

Alexey Anisenkov, CHEP-2018

Example (Main WebUI page)

12

List of implemented
components

Navigation panels

Alexey Anisenkov, CHEP-2018

Graphical component to draw plots

13

Own implementation of low-level plot.js widget based on D3.js

• Fully interactive,
dynamic data
visualization

• Data loading via
REST JSON API

• Implemented as
standalone JQuery
plugin

• Draw several graphs on
same pad within canvas

• Common X-axis slider
for all plots on a page

• Predefined time
windows

• And more..

Alexey Anisenkov, CHEP-2018

Interactive plots: some features

14

The same interface for
real-time and historical data

Automatic refresh
for real time data

Predefined
plot presets

Slow plots (time as x-axis)

Ability to zoom in/out for x,y axis
to get more detailed picture

Log scale, 2 y-axis on same pad,
custom data transformation (deriv)

Automatic zoom and switch
from lines to points level
depending on requested
x-time window;
Point details pop-up window

Alexey Anisenkov, CHEP-2018

Graphical component: shared implementation

15

Given application is used as a base engine for following components:

• Central Slow control data visualization (slowplots)

• Online and Nearline analysis data visualisation - run by run trending
(trendplots)

• Custom data monitoring
- Real-time read-out from frontend electronic

(e.g. temperatures of SiPM calorimeters at G-2 - g2calo)
- Draw monitoring data from custom db/source (e.g. monitoring of

 microTCA crate temperatures/params at G-2 - g2utca application)

G2calo plots G2utca plots CMD-3 trend plots

Alexey Anisenkov, CHEP-2018

Data quality plots (trend plots)

16

Different data flow to generate data quality metrics (online, nearline, offline)

 Slow
Control DB

MIDAS
ODB

Slow
control

Slow control plots:

Values vs time

DAQ

Online
data

monitor

Near real
time reco

Full
offline
reco

Monitoring ROOT
Histograms

Automatic
Analysis

Key parameters are
saved in RDMS
(resolution, avg

amplitudes, track rec
efficiency, etc..)

Run DB

DQ plots:

Values vs run #
Alexey Anisenkov, CHEP-2018

Implementation feature: Django template tag as widget

17

Special template tag encapsulates all complicated logic and allows easy
configuration of plots by users within WebUI

• Pages can be edited directly
(thanks to templatesadmin app
implemented)

• slowplot template tag specifies
plot configuration (sensors, pads,
colors, ranges, axis settings,
transformations, auto zoom, etc..)

We use Django tags to create “widgets”

Alexey Anisenkov, CHEP-2018

Remote script execution

18

The system is able to execute custom scripts from the web page, run them
real-time at required DAQ machines, and report exit code/stderr/stdout back

• Use distributed task queue Celery +
MySQL/RabbitMQ as message broker

• Register within the system corresponding
Task and track its status in WebUI

• Use template tags approach to customize
how data should be reported back to web

• Support for locking (multiple launch
protection) + appropriate authorization
checks

Base scripts component:

Typical use-cases and applications:
• Interactive hardware control (e.g. prepare boards for data taking, runscripts at CMD-3)

• To generate histograms/plots server-side with complicated analysis or involved several
data sources using ROOT/JSROOT
(e.g. scriptplots, offlineplots at CMD-3, trendplot at G-2)

Alexey Anisenkov, CHEP-2018

Request

Browser

DB

Task
Queue

Remote
Executor

DAQ PC1, PC2,..
Results

 (files, histos, logs, ..)

Add task

Authorization
checks

exec

Task status

Update

Check task
status

Get results

Apache user Online user (HW access)

Runlog table view/operator helper (classic application)

19

Provides list of collected runs during shift with primary information exposed

• Interactive view to browse Run log table
operated by MIDAS

• Ability to update Run details if need

CMD-3 RunLog

Run Field Log at G-2

Highlight bad Runs
that require attention
by operator

Live filtering, customize
columns, resolve runs by
given shift/date

Provide shift overview in
numbers

Complement Run details
with parameters produced
by Offline Analysis

Links to online
histograms and
Run passport
page

Alexey Anisenkov, CHEP-2018

 Not covered in this talk

• Real-time monitoring using table representation
(slowsensors)

• Overall information about Runs (runinfo)

• Update forms to change various information in databases

• Changes log and history of user actions made within the
system (syslog)

• Custom applications for particular subsytems:

- hardware control modules
- interactive forms to configure boards (e.g. triggersettings)
- remote execution of chain of scripts (loadelectronics)

Other components

20
Alexey Anisenkov, CHEP-2018

Modern Web 2.0 technologies and open source tools can be
effectively used to build functional, handy and attractive
applications for Slow Control and monitoring system

• The CMD-3 web-based monitoring system provides full
access to whole set of monitoring and control data as
well as possibility to configure hardware equipment

• Thanks to modular approach and
experiment-independent architecture, parts of the
system are also used for other experiments
 (Muon G-2, BINP MRT)

Conclusion

21
Alexey Anisenkov, CHEP-2018

22

Thank you for your attention!

Script plots example

23

Run custom analyzer (python ROOT script) server-side to build plots/histograms

• Cache results (pictures, root, logs, eps)

• User can implement own ROOT script

• Once a script is uploaded to the server
the integration into any web page is just
one line using special template tag

• Additionally use JSROOT to
interactively browse ROOT files content

Template tag to visualize script result

{% trendplot name="runoverview_shift"

query="week" redirect="reload"

thumburl="trendplot-info" width='500'

cache_time='4h' force='1' %}

Progressing page
Result (Run Overview per shift)Rebuild button

Alexey Anisenkov, CHEP-2018

