### A Web-based control and monitoring system for DAQ applications

#### Alexey Anisenkov (BINP)

Ivan Logashenko (*BINP*) Daniil Zhadan (*BINP*)

CHEP 2018, Bulgaria, 9 July 2018



### Outline

- The Role of monitoring in Online Computing/DAQ (Why do we need central monitoring tools?)
- Involved Experiments (CMD-3, Muon g-2, MRT)
- Architecture Overview (Web-based approach)
- Components of the system

## Role of monitoring tools in DAQ

Slow Control and monitoring system is a vital part of any HEP experiment

- Monitor the status of DAQ and DAQ hardware
- Monitor physical and environmental conditions
- Control the quality of data taken
- Control and operate hardware equipments
- Guarantee safety and correct functioning of whole system



## **CMD-3** Experiment



The system discussed in the talk was developed for CMD-3 detector Typical small-to-medium scale HEP experiment





- e+ e- collider VEPP-2000 at BINP (Novosibirsk)
- 7 detector's subsystems + cryo, gases, HV, LV
- ~ O(1000) environmental sensors
- ~ O(100) monitoring histos, data quality plots Alexey Anisenkov, CHEP-2018
- 60 authors
- 10k event size, 1kHz FLT rate <sup>4</sup>

## **Basic considerations**

Key requirements for the monitoring system:

- Independent of particular experiment (as much as possible)
- Modular structure
- web-based approach

Thanks to the modular approach,

parts of the system are used at two other experiments:

# **Fermilab**

- Muon G-2 (250 authors)
  - Larger than CMD-3,
    - but same scale

Alexey Anisenkov, CHEP-2018

μ



- BINP MRT(X-ray tomography)
- Smaller, measurement station

## Basic sources of monitoring data

During the operations DAQ and related systems produce a lot of information for experts and people on shift that need to be monitored and taken into account



## Key goals of high level monitoring system

# We need a unified and user-friendly access to diverse pool of monitoring/control data:

- Access to real-time and archived data
- Different focus for shifters and experts
- Possibility to control detector subsystems
- Various helpers (data highlighting)
- Physicist should be able to extend the interface (min knowledge in programming)

### Web-based approach meets well our goals

## System architecture: Why a web-based approach?

# Modern Web technologies offer a big set of advantages and ready to use components out of the box.



#### **Client-server architecture**

- scalability and reliability
- extensibility (easy integration of experiment specific tools)
- hide direct dependency with front-end electronics and data sources

#### Web application



- cross platform compatibility (no dependency to client OS)
- accessible anywhere (can be even used remotely outside control room)



- cost effective and rapid development (thanks to Python, Django, and plenty of open-source web packages)
- easy customizable (CMS-like approach to edit pages) 8

### Sidenote: MIDAS as core platform for DAQ & SC at CMD-3

#### MIDAS is a rich data acquisition software developed at PSI and at TRIUMF

- Includes native Web Interface (mhttpd)
- Provides Online database (ODB) with tree-based structure
- Uses shared-memory Buffer for event collection and distribution
- Supports ROOT analyzers for online data monitoring (produces histograms)
- Frontend acquisition code written in C/C++

| MIDAS                                | Sun Jul 1 01:42:22 2018 Refr:60 |                                 |              |           |                                   |                 |  |
|--------------------------------------|---------------------------------|---------------------------------|--------------|-----------|-----------------------------------|-----------------|--|
| Start ODB Me                         | ssages ] ELog ] Ala             | rms Programs                    | Config Help  | ]         |                                   |                 |  |
| Reset Alarms Che                     | ck Sound MCHS                   | LoadAll TF CF                   |              |           |                                   |                 |  |
| LHE meas period                      | LXE Sensors High Vo             | oltage DC Tempera               | ture Sensors | CsI BGC   | DC and ZC Mag                     | net VEPP Info   |  |
| DC Thermo DC W                       | ire Rates SnowCity              | Run Info Comp                   | uters LXE No | ise       |                                   |                 |  |
| Run #69500                           | Stopped                         | Alarms: Off                     | Restart:     | Yes       | Data dir: /daqd                   | ata/online/data |  |
| Start: Mo                            | on Jun 25 17:46:4               | 45 2018 Stop: Mo                |              |           | on Jun 25 17:51:37 2018           |                 |  |
| Equipment                            |                                 | Status                          |              | Events    | Events[/s]                        | Data[MB/s]      |  |
| EB                                   | Event Builder@dq7cmd.inp.ns     |                                 | nsk.su       | 417       | 0.0                               | 0.000           |  |
| SlowControl                          | SlowControl@dq5cmd.inp.nsk.     |                                 |              | 478274    | 1.1                               | 0.000           |  |
| DaqLink2 DaqLink02@                  |                                 | @dq8cmd.inp.nsk.su              |              | 1171      | 0.0                               | 0.000           |  |
| DaqLink1                             | DaqLink01                       | sk.su                           | 1132         | 0.0       | 0.000                             |                 |  |
| Channel                              |                                 | Events                          | MB wri       | tten      | Compression                       | GB total        |  |
| #0: run69500.mid                     |                                 | 867                             | 32.727       |           | N/A                               | 82421.872       |  |
| Lazy Destination                     |                                 | Progress                        | File Name    |           | Speed [MB/s]                      | Total           |  |
| cmd                                  |                                 | 100 %                           | run69499.mid |           | 0.0                               | 24406.2 %       |  |
| 04:36:08[PingD                       | TRUdq8,INFO]                    | Program PingD                   | TRUdq8 or    | n host da | 8cmd started                      |                 |  |
| SlowControl [dq7cmd.inp.nsk.su]      |                                 | slow_gas [dq2cmd.inp.nsk.su]    |              |           | slowrun [dq5cmd.inp.nsk.su]       |                 |  |
| slowenv [dq5cmd.inp.nsk.su]          |                                 | slow_dq5 [dq5cmd.inp.nsk.su]    |              |           | slow_dq8 [dq8cmd.inp.nsk.su]      |                 |  |
| slow_dq7 [dq7cmd.inp.nsk.su]         |                                 | slowrates [dq5cmd.inp.nsk.su]   |              |           | CheckAll [dq5cmd.inp.nsk.su]      |                 |  |
| slow_dq11 [dq11cmd.inp.nsk.su]       |                                 | Lazy_Ftp [dq7cmd.inp.nsk.su]    |              |           | CheckProc [dq5cmd.inp.nsk.su]     |                 |  |
| Speaker [dq10cmd.inp.nsk.su]         |                                 | mhttpd [dq7cmd.inp.nsk.su]      |              |           | Logger [dq7cmd.inp.nsk.su]        |                 |  |
| Analyzer [dp5cmd]                    |                                 | slowmagnet [dq12cmd.inp.nsk.su] |              |           | DaqLink02 [dp8cmd]                |                 |  |
| DaqLink01 [dq7cmd.inp.nsk.su]        |                                 | slowhv [dq5cmd.inp.nsk.su]      |              |           | EventDisplay [dq10cmd.inp.nsk.su] |                 |  |
| Event Builder<br>[dq7cmd.inp.nsk.su] |                                 | PingDTRUdq7 [dq7cmd.inp.nsk.su] |              |           | PingDTRUdq8 [dq8cmd.inp.nsk.su]   |                 |  |

At CMD-3 we extended MIDAS API by implementing python library (pymidas) to access ODB and Buffer modules. PyMidas has allowed to apply easy integration with our DAQ services and in particular with web applications. 9

### Architecture overview



### Implementation details: Web2.0











- Apache/WSGI + Python + Django framework as server backend
- Independent database backends (PostgreSQL, MySQL, etc)
- Web Services technologies (REST API, WebUI, widgets)
- Bootstrap framework as HTML/CSS/JS client frontend (responsive, interactive, mobile-friendly)
- Client AJAX, JQuery plugins, own widgets, HTML5 vector graphics (datatables, treeview, calendar..)
- Plugin based approach (shareable applications in "core" re-used by many components)



### Graphical component to draw plots

#### Own implementation of low-level plot.js widget based on D3.js

 Fully interactive, dynamic data visualization

~

-hi

Ħ

- Data loading via REST JSON API
- Implemented as standalone JQuery plugin
- Draw several graphs on same pad within canvas
- Common X-axis slider for all plots on a page
- Predefined time
   windows
- And more..







### Interactive plots: some features



### Graphical component: shared implementation

#### Given application is used as a base engine for following components:

- Central Slow control data visualization (slowplots)
- Online and Nearline analysis data visualisation run by run trending (trendplots)
- Custom data monitoring
  - Real-time read-out from frontend electronic
     (e.g. temperatures of SiPM calorimeters at G-2 g2calo)
  - Draw monitoring data from custom db/source (e.g. monitoring of

microTCA crate temperatures/params at G-2 - g2utca application)



### Data quality plots (trend plots)

Different data flow to generate data quality metrics (online, nearline, offline)



### Implementation feature: Django template tag as widget

We use Django tags to create "widgets"

# Special template tag encapsulates all complicated logic and allows easy configuration of plots by users within WebUI

Edit Template: slowplots/presets/Run\_Overview/Environment.ht



### **Remote script execution**



exec

Data Analysis Framework

The system is able to execute custom scripts from the web page, run them real-time at required DAQ machines, and report exit code/stderr/stdout back

Browser

#### Base scripts component:

- Use distributed task queue Celery + MySQL/RabbitMQ as message broker
- Register within the system corresponding Task and track its status in WebUI
- Use template tags approach to customize how data should be reported back to web
- Support for locking (multiple launch protection) + appropriate authorization checks

#### Typical use-cases and applications:

- Task Authorization checks Queue Add task Request Update Remote Get results Task status Executor DB Check task status Results (files, histos, logs, ..) DAQ PC1, PC2,... Apache user **Online user (HW access)**
- Interactive hardware control (e.g. prepare boards for data taking, **runscripts** at CMD-3)
- To generate histograms/plots server-side with complicated analysis or involved several data sources using ROOT/JSROOT
   (e.g. scriptplots, offlineplots at CMD-3, trendplot at G-2)

### Runlog table view/operator helper (classic application)

#### Provides list of collected runs during shift with primary information exposed



### Other components

#### Not covered in this talk

- Real-time monitoring using table representation (slowsensors)
- Overall information about Runs (runinfo)
- Update forms to change various information in databases
- Changes log and history of user actions made within the system (syslog)
- Custom applications for particular subsytems:
  - hardware control modules
  - interactive forms to configure boards (e.g. triggersettings)
  - remote execution of chain of scripts (loadelectronics)



Modern Web 2.0 technologies and open source tools can be effectively used to build functional, handy and attractive applications for Slow Control and monitoring system

- The CMD-3 web-based monitoring system provides full access to whole set of monitoring and control data as well as possibility to configure hardware equipment
- Thanks to modular approach and experiment-independent architecture, parts of the system are also used for other experiments (Muon G-2, BINP MRT)

Thank you for your attention!

### Script plots example



#### Run custom analyzer (python ROOT script) server-side to build plots/histograms

#### Template tag to visualize script result

{% trendplot name="runoverview\_shift"
query="week" redirect="reload"
thumburl="trendplot-info" width='500'
cache time='4h' force='1' %}



- User can implement own ROOT script
- Once a script is uploaded to the server the integration into any web page is just one line using special template tag
- Additionally use JSROOT to interactively browse ROOT files content



#### Result (Run Overview per shift)

