

Quantum Associative Memory in HEP Track Pattern Recognition

Illya Shapoval, Paolo Calafiura

Lawrence Berkeley National Laboratory

CHEP 2018, Sofia, Bulgaria 9-13 July, 2018

1. Motivation

Memory in real-time pattern matching

	RAM	Associative Memory (CAM)		
		ASIC chips	Hopfield networks	
Capacity ¹ (patterns)	<i>O</i> (N/d)	<i>O</i> (N/d)	<i>O</i> (N) _{N≥d} : ≤kN, 0.138≤k≤2 ²	
Recall speed	<i>O</i> (N/d)	<i>O</i> (1)	Ω(N) _{N≥d}	
Spurious memories	None	None	Possible (e.g., <i>O</i> (e ^N) for a Hebb-type rule ³)	
Recall of incomplete/noisy inputs	Yes/ <mark>No</mark>	Yes/ <mark>No</mark>	Yes/Yes	
Power dissipation	Low	High	Low	
Cost	Low	High	R&D	

¹ N is the total number of elementary storage units in a device (memory cells/neurons), **d** - length of a pattern.

² B. Muller, J. Reinhardt, M.T. Strickland, Neural networks: An Introduction. Springer, 1995

³ J. Bruck, V. P. Roychowdhury. On The Number of Spurious Memories in the Hopfield Model. IEEE Trans. on Information Theory, V. 36, 2, 1990

An example: ATLAS Fast Tracker (FTK) LHC Run 2 (2015) - Run 3 (2023)

A HARDWARE FOR REAL-TIME GLOBAL TRACK FINDING

Requirements:

- ▶ Input: 10⁸ channels
- ► Latency: ~100 us
- ► Frequency: @100 kHz

Pattern recognition engine: Associative Memory

- ▶ Storage: 8 10³ AM custom ASIC chips
- Power: ~32 kW (+ cooling)
- Capacity: 10⁹ track patterns
- Latency: average ~50 us, max ~180 us

Scalability of Associative Memory

Experiment	LHC Run 2-3	HL-LHC (2026)	HE-LHC (2030s)
LHC Luminosity (cm ⁻² s ⁻¹)	~10 ³⁴	~10 ³⁵	~10 ³⁶
Tracks/event	~500		~50,000
AM Capacity* (patterns)	10 ⁹	[8 - 16] • 10 ⁹	?
AM Storage* (AM chips)	8 • 10 ³	[2 - 4] • 8 • 10 ³	?
Density* (patterns/chip)	128k (65 nm)	~512k (28 nm)	?

* Required by ATLAS physics and detector granularity

Quantum Memory

• Represent pattern $\xi^i \equiv (\xi_1, \xi_2, \dots, \xi_d)$ by a **basis state** in the Hilbert space of d quantum information units:

$$|\xi^i\rangle \equiv |\xi_1,\xi_2,\ldots,\xi_d\rangle$$

▶ Represent Ξ - a set of *N* patterns - as **superposition** of the basis states:

$$|\Xi\rangle = \sum_{1}^{N} \alpha_{i} |\xi^{i}\rangle, \qquad \alpha_{i} \in \mathbb{C} \quad \wedge \quad \sum_{1}^{N} |\alpha_{i}|^{2} = 1$$

Absolute QuAM capacity

QuAM features exponential storage capacity of 2^d and requires 2(d+1) qubits to operate^{1,2}.

Length of detector hit identifier (bits)	8	16	32
Length of binary track pattern (bits) ³	64	128	256
QuAM register (qubits)	130	258	514
QuAM capacity (patterns)	~ 10 ¹⁹	~10 ³⁸	~10 ⁷⁷

¹ C.A Trugenberger, Probabilistic Quantum Memories. Phys Rev. Lett. Vol 87, 6 (2001)

 2 d is the pattern length

³8 logical layers of the Inner Tracker

QuAM storage protocol

A quantum circuit implementing the iterative part of the storage protocol¹.

¹ C.A Trugenberger, Probabilistic Quantum Memories. Phys Rev. Lett. Vol 87, 6 (2001)

QuAM storage protocol

A quantum circuit implementing the iterative part of the storage protocol¹.

¹ C.A Trugenberger, Probabilistic Quantum Memories. Phys Rev. Lett. Vol 87, 6 (2001)

QuAM storage protocol 2-bit patterns example

The end-to-end circuit for storing two 2-bit patterns: "01" and "10"

QuAM retrieval protocol

Generalized Grover's algorithm*

1

S

$$\begin{split} |M\rangle &= |\Xi\rangle - /d - \hat{I}_{\mathcal{T}} - \hat{G} - \hat{I}_{\Xi} - \hat{G} + \hat{I}_{\mathcal{T}} - \hat{G} - \hat{I}_{\Xi} - \hat{G} + \hat{I}_{\mathcal{T}} - \hat{G} - \hat{I}_{\mathcal{T}} - \hat{I}_{\mathcal{T}} - \hat{G} - \hat{I}_{\mathcal{T}} -$$

* $\hat{I}_{ au}$ - "quantum oracle" operator. Inverts the phase of state representing the target pattern au.

 $\hat{G}^{'}$ - Grover's diffusion operator. Inverts all amplitudes about the amplitudes average.

 \hat{I}_{Ξ} - Inverts phases of all terms originally present in memory.

3. Algorithmic properties

QuAM retrieval protocol · lallys **Generalized Grover's algorithm*** $|M\rangle = |\Xi\rangle - /d$ \hat{I}_{Ξ} Ĝ $|\tau\rangle$ \hat{G} Grover's cycle. Repeated $T_j = NI\left(\frac{(j+1/2)\pi - \arctan\left(\frac{k(0)}{\overline{l}(0)}\sqrt{\frac{m}{N-m}}\right)}{\arccos\left(1-\frac{2m}{N}\right)}\right), \quad j = 0, 1, 2, \dots \text{ times.}$ $\sum_{i=1}^{m} k_i(t) |x_i\rangle + \sum_{i=m+1}^{N} l_i(t) |x_i\rangle$ Peak probability vs. pattern Probability "ramp-up" vs. pattern matches matches and memory capacity States that don't $P(t,m) = \sin^2\left((2t+1)\arcsin\sqrt{\frac{m}{N}}\right)\Big|_{N=10^9}$ States that $P(m,N) = \sin^2\left((2t+1)\arcsin\sqrt{\frac{m}{N}}\right)\Big|_{t=T}$ match the target match the pattern. target pattern. Probability 6×10⁸ 4×10^{8} $m = 1, N = 10^9 : T_0 = 24836, P_{max} = 0.99999999999965568$

 $m = 1, N = 10^{9}: T_{0} = 24836, P_{max} = 0.9999999999965568$ $m = 20, N = 10^{9}: T_{0} = 5553, P_{max} = 0.9999999991404647$ Note: neither quantum noise, nor probabilistic memory cloning operations, are taken into account here.

 ${\hat I}_{ au}$ - "quantum oracle" operator. Inverts the phase of state representing the target pattern au.

 $\hat{G}\,$ - Grover's diffusion operator. Inverts all amplitudes about the amplitudes average.

 I_{Ξ} - Inverts phases of all terms originally present in memory.

nalysic

Retrieval connectivity requirements

d=2

1 {p}, {u} and {m} nodes represent qubits from temporary storage, control and memory registers.
 d - pattern length

Topological complexity of QuAM¹

Storage connectivity requirements

Retrieval connectivity requirements

Cumulative QuAM requirements

d=20 (~ current pattern length in ATLAS)

1 (p), (u) and (m) nodes represent qubits from temporary storage, control and memory registers.
 d - pattern length

4. Implementation

QuAM on QISKit

QISKit - Quantum Information Software Kit

An open source project comprising Python SDK, API and OpenQASM for implementing quantum algorithms on **IBM Quantum Experience (QE) hardware and simulators**.

Supported backends:

- IBM QE cloud-based quantum chips
 [5Q Sparrow/Raven, 16Q Albatross, 20Q]
- Local/remote simulators
 [with realistic noise models]

QuAM on QISKit

Q_{Uantum}

QISKit - Quantum Information Software Kit

An open source project comprising Python SDK, API and OpenQASM for implementing quantum algorithms on **IBM Quantum Experience (QE) hardware and simulators**.

Supported backends:

- IBM QE cloud-based quantum chips
 [5Q Sparrow/Raven, 16Q Albatross, 20Q]
- Local/remote simulators
 [with realistic noise models]

QuAM storage circuit generator [implemented]

Ex.: complete circuit for encoding three 2-bit patterns

QuAM retrieval circuit generator [implemented]

Ex.: complete circuit for retrieving one 2-bit pattern

Retrieval QASM

Emerging Quantum Technologies

Qua	antum Chip	Qubits	Announced	Qubit Archetype	Computing Model
D-Wave 2000Q		2048	01/2017	Superconducting flux qubits	Quantum annealing
IBM 20Q and 50Q		20	11/2017	Superconducting transmon qubits	Quantum circuits
		50	11/2017 (tests)		
Rigetti 19Q		19	12/2017	Superconducting transmon qubits	Quantum circuits
Intel Tangle Lake		49	01/2018 (tests)	Superconducting qubits ¹	Quantum circuits
$\langle {f G} {f oogl} {f e} angle$ Bristlecone		72	03/2018 (tests)	Superconducting transmon qubits	Quantum circuits
UC Berkeley QNL		4 (8)	2017	Superconducting	Quantum
		64	2022 ?	dansmon qubits	CIICUITS

¹ Archetype of superconducting qubits is not disclosed. Also investing in spin qubits in silicon.

Emerging Quantum Technologies

Qu	antum Chip	Qubits	Announced	Qubit Archetype	Computing Model
D-Wave 2000Q		2048	01/2017	Superconducting flux qubits	Quantum annealing
IDM 200 and 500		20	11/2017	Superconducting transmon qubits	Quantum circuits
		50	11/2017 (tests)		
Rigetti 19Q		19	12/2017	Superconducting transmon qubits	Quantum circuits
Intel Tangle Lake		49	01/2018 (tests)	Superconducting qubits ¹	Quantum circuits
$\langle {f G} {f oogl} {f e} angle$ Bristlecone		72	03/2018 (tests)	Superconducting transmon qubits	Quantum circuits
UC Berkeley QNL		4 (8)	2017	Superconducting	Quantum
		64	2022 ?	transmon qubits	Circuits

¹ Archetype of superconducting qubits is not disclosed. Also investing in spin qubits in silicon.

Challenges and Opportunities

Functional trade-offs

AM on ASICs **assembles** track patterns from hits:

QuAM restores, validates and/or generalizes track patterns:

Challenges and Opportunities

Functional trade-offs

Memory persistence

AM on ASICs **assembles** track patterns from hits:

QuAM **restores, validates** and/or **generalizes** track patterns:

Memory state collapses with each query. Repetitive re-initialization can be a show stopper. A possible solution may employ **probabilistic cloning of memory**.

Memory in real-time pattern matching

	RAM	Associative Memory (CAM)			
		ASICs	Hopfield networks	QuAM	
Capacity ¹ (patterns)	<i>O</i> (N/d)	<i>O</i> (N/d)	$O(N)_{N \ge d} : \le kN, 0.138 \le k \le 2^2$	<i>O</i> (2 ^d)	
Recall speed	<i>O</i> (N/d)	<i>O</i> (1)	$\Omega(N)_{N \geq d}$	<i>O</i> (<i>O</i> (N)+N ^{1/2})	
Spurious memories	None	None	Possible (e.g., <i>O</i> (e ^N) for a Hebb-type rule ³)	None	
Incomplete/noisy inputs	Yes/ <mark>No</mark>	Yes/ <mark>No</mark>	Yes/Yes	Yes/Yes	
Power dissipation	Low	High	Low	Low	
Nature	Det.	Det.	Deterministic	Probabilistic	
Cost	Low	High	R&D	R&D	

¹ N is the total number of elementary storage units in a device (memory cells/neurons), **d** - length of a pattern.

² B. Muller, J. Reinhardt, M.T. Strickland, Neural networks: An Introduction. Springer, 1995

³ J. Bruck, V. P. Roychowdhury. On The Number of Spurious Memories in the Hopfield Model. IEEE Trans. on Information Theory, V. 36, 2, 1990

Summary

- **QC paradigm** can yield **asymmetrical advantages** in handling certain challenges of HE HEP real-time track pattern recognition
- **QuAM** features:
 - Exponential storage capacity (absolute)
 - Optimal QA for pattern recall
- Current status:
 - Theoretical analysis of QuAM properties completed
 - Memory initialization iterations
 - Recall probability bounds
 - Topological complexity analysis
 - **Storage/retrieva**l quantum circuit generators **implemented** in QISKit
 - Ready to run on real quantum hardware
- Next steps:
 - Mitigate the memory initialization bottleneck
 - \circ ~ Scale up QuAM simulations to high-order patterns
 - Do full-stack performance tests (timing, efficiency)

