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LHCb Upgrade and Kalman filter



The LHCb Upgrade

Tracking subdetectors

LHCb-PHO-GENE-2008-002-2

• Run at higher luminosity

4 · 1032cm−2s−1 (Run I,II) →
2 · 1033cm−2s−1 (Run III)

• Upgrade to full software trigger:

• From: L0 hardware trigger

(30MHz → 1MHz)

• To: 30MHz detector readout

• Upgraded tracking subdetectors:

VELO, UT and SciFi
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Fast Kalman filter

Track reconstruction:

• Reconstruct VELO tracks.

• Add the UT hits.

• Find matching hits in SciFi.

Used to obtain an optimal track estimate,

the Kalman filter is applied in both the

”fast” stage to select tracks, and the

”best” stage to give ultimate momentum

resolution.
[LHCb-PUB-2017-005]

Depending on the complexity of the Kalman fit which is performed, it can contribute up to

60% of the ”best” sequence time.
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https://cds.cern.ch/record/2244312


Kalman filter at LHCb

• Well-known quadratic estimator,

where for every hit we ”predict” and

”update” the state according to the

model and the measurements

• 3 steps: forward filtering, backwards

filtering and smoother

• High volume of small matrix

operations

• Not trivial to be parallelized

LHCb-PHO-GENE-2008-002-2
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Vectorized implementation

• Using SIMD, various filter steps are calculated for N tracks, in parallel

• Maximize Vector units usage. (Tracks have different number of hits)

• Scheduler

• Use of static scheduler for available cores and vector processing units

• The scheduling applies to all steps (forward, backward and smoother)

• Data layout

• AOSOA: Array Of Structure Of Array

• Benefit from both SIMD and cache

• Adapt to vector width in compile time

(cross-architecture)

• Precision can be changed between single and double

to test stability of the calculations, and exploit

different hardware.
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Cross-architecture Kalman fit - Throughput
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Cross-architecture Kalman fit - Roofline
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Parametrized Kalman filter

• The slow parts of the Kalman filter are:

• The extrapolation through the magnetic field

• The magnetic field and the material look up

• We replace this parts with parametrizations for the extrapolations between layers in the

detector.

• We apply ”simple” functions outside the magnet region, and more complex functions inside

it.

• Extrapolation from one detector layer to the next is done with functions that map the state

at position z to a state at position z ′

• The magnetic look up is not necessary since each detector layer has its own tuned

parametrized extrapolation.

• Material effects are modelled for every extrapolation function with a noise matrix added to

the state covariance matrix. Energy-loss is not directly modelled.
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Parametrized Kalman filter

LHCb Kalman
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Parametrized Kalman filter - Momentum resolution
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https://twiki.cern.ch/twiki/bin/view/LHCb/ConferencePlots##Parametrized_Kalman_filter
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Further simplifications

For the parametrized Kalman filter:

• A new version of the parametrized Kalman allows to cover the discrepancies for low

momentum resolution, and the larger angle in X.

• Being tested, coming soon.

Grouping measurements:

• For the tracking stations the measurements could be grouped, processing a smaller

number of nodes.

• To be tested, but this could simplify the computations for faster processing.
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Information Filter

• Expressing it with the inverse covariance matrix:

• W = P−1
k|k−1

• t = W · xk|k−1

• Simplification of some matrix operations, e.g. noise step can be done with an

approximation using only the terms (tx , tx) and (ty , ty ).

• There is no need for an artificial covariance matrix at the beginning.

• This should allow to run in single precision, thus increasing the performance when

computing.

• There are some challenges to solve with the new formulation.

• e.g. Inversion of non symmetric 5x5 matrix.

• This is an ongoing work, still not tested in the framework.
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Conclusions

• Vector implementation: great performance on different architectures thanks to data layout

and scheduler. 10%-20% performance gain.

• Integrated in Gaudi framework and ready to use.

• Parametrization:

• extrapolation/material requires 30%-50%. Simplified parametrization can speed up by a

factor 5-10.

• We can predict which tracks will give us comparable results to the full Kalman filter.

• Further simplifications could yield better results in the parametrizations.

• Moving to an Information filter could allow to compute in single precision and apply other

simplifications, with the potential performance gain.
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Questions?
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