FELIX based readout of the Single-Phase ProtoDUNE detector

A. Borga, E. Church, F. Filthaut, <u>E. Gamberini</u>, P. de Jong., G. Lehmann Miotto, F. Schreuder, J. Schumacher, R. Sipos, M. Vermeulen, K. Wierman, L. Wood

CHEP 2018 Conference - Sofia, Bulgaria 9-13 July 2018

ProtoDUNE Single Phase

Largest monolithic single phase LArTPC detector and test beam built to date:

- Goal is to validate detector design, construction and data acquisition solutions for DUNE's Single Phase Far Detectors
 - 10x10x10 LArTPC
 - o 800 tonnes of LAr
 - Located on surface → external trigger needed
- Extreme schedule:
 - o Project launch: Q1 2016
 - Expected data taking: Q4 2018
- DAQ approach: use ready-to-use solutions
 - minimise development time

More on ProtoDUNE in yesterday's plenary talk by Karol Hennessy

EP-DT
Detector Technologies

Data flow and volume

- LArTPC → ionisation tracks are collected by the wires of the
 Anode Plane Assemblies (APAs)
- Cold electronics in the detector digitise signals recorded by wires at 2 MHz
- Warm interface boards (WIBs) then group the resulting channels into frames, each of which consists of a single
 500 ns time slice of the grouped channels (128 or 256)
- Output via optical links to DAQ:
 - 2x 9.6 Gb/s or 4x 4.8 Gb/s supported, depending on readout solution
 - Continuous timestamped data frame streams
- Each APA (2560 channels) is read out by 5x WIBs for a total payload of about 74 Gb/s

FELIX readout solution for ProtoDUNE

The <u>Front-End Link</u> e<u>X</u>change will be the readout system of the ATLAS experiment after LS2:

- Approach relying on servers and COTS to do data processing
 - PCle based FPGA custom card
- Networked scalable system

In **ProtoDUNE Single Phase**:

- Software trigger selection
 - State of the art, lock-free circular buffers
- Software compression
 - Will be hardware accelerated with Intel®
 QuickAssist Technology (QAT)

Plan to read out a full APA (1 of 6)

ATLAS FELIX

- <u>F</u>ront-<u>E</u>nd <u>Li</u>nk e<u>X</u>change
 - Routes data between detector electronics and high-speed network-connected hosts (data, control, timing, trigger)
 - Move data handling away from custom hardware directly connected to the detector electronics
 - PCle card(s) on a host running routing software (felixcore)

FELIX readout implementation

- A FELIX card receives 464 bytes frames at fixed 2 MHz from 10x 9.6 Gb/s optical links -> about 74 Gb/s total data rate excluding 8b/10b encoding
- Use of FELIX software suite to publish frames through network maintaining the 10 separated link streams: felixcore
- Mellanox ConnectX-5 100 Gb/s used for networking
- Trigger matching and compression performed in custom "BoardReader" applications

Data flow overview

Incoming data framed by SOP/EOP into fixed size chunks

- Firmware prepares 1 kB "blocks" for DMA transfer
- Software processes these blocks from host memory, parsing chunks and sub-chunks

EP-DT
Detector Technologies

FELIX Firmware

- In order to sustain the high rate of incoming frames (2 MHz) and high throughput requirements, **modest modifications of the firmware** were introduced:
 - Chunks are packed together in order to minimise memory-copy effort at the publisher software level. Rate of networking calls is also greatly reduced.
 - o DMA payload (block) size increased in order to optimise parsing.
 - Multiple descriptors (one per link) DMA'ing into different memory areas.

The *felixcore* application

- In the ATLAS generic version, felixcore in charge of routing data from the detector to the networked software clients and vice versa.
- Supports several back-ends, such as TCP/IP and Infiniband integrated in the NetIO messaging layer.

- In ProtoDUNE only uni-directional traffic from detector is used and data fragments have a fixed size
- Optimised in order to achieve the required data throughput:
 - Simplified data routing by means of a dedicated threads per physical link
 - Scatter/gather technique used in the TCP/IP

FELIX BoardReader implementation

- The FELIX BoardReader is implemented as part of the <u>artdag</u> data acquisition framework
- Receives and buffers data continuously
 - One subscriber thread for each link populating a SPSC queue (lock-free implementation from the <u>Folly</u> library)
- A specialized thread extracts data from buffer, matching a 5 ms time-window based on the trigger request from EventBuilders at 25Hz (baseline rate)
- Re-ordering and compression of data
- Complete fragment with compressed data is sent downstream to EventBuilders

Compression

- ProtoDUNE target compression factor set to 4 (implications in storage hardware projections)
 - Efficient compression can be achieved by re-ordering the frames to contiguous ADC data for individual channels

Compression should also keep up with the 25 Hz trigger rate and the about 46 Mbytes payload size → Hardware accelerated compression

- Intel® QuickAssist Technology (QAT)
 - Under study at CERN
 - Can offload the CPU and compress faster
- Intel® Xeon® Scalable processors with integrated
 QAT support used in BoardReader hosts
- Allows a reduction of the time required for the compression of one data fragment
 - o from about 100-200 ms (software only)
 - to about 5-9 ms (accelerated)

Figure 5. Accelerated zlib Performance for Compression and Decompression (Using a single Intel® Communications Chipset 8950)

zlib Deflate

zlib Inflate

Conclusions

- ProtoDUNE expects to receive beam during Q4 2018
- One APA will be read out using the FELIX readout system
- FELIX is based on the concept of having a thin interface between the front-end and commodity hardware
- Input rate is sustained using firmware and software modified from the original ATLAS version
- Data is sent to software BoardReaders, performing trigger matching and lossless compression
- The FELIX readout is in use for detector commissioning and is being finalized for data taking with beam in September 2018

12/07/2018