
Tooling

Functional tests Stress tests

Introduction
• We use a single threaded python script to mimic a client

process which uploads data to the object store
• The client script is packaged in a Docker container to

ensure a reproducible environment
• Client BOTO libraries were identical to those used in

ATLAS production systems (boto-2.48)
• Scale is achieved by deploying this script on a

Kubernetes cluster and replicating the Pod
• Scaling via Kubernetes has the benefit of being

deployed in a distributed fashion rather than using
multi-threaded client on a single machine or machines
in one place.

• To date we have only deployed at Google
• Costs are managed by only running a Kubernetes

cluster for the duration of the test, typically 20 minutes

Results

Summary
In this work we developed a platform for running functional and stress tests against object storage instances. The approach taken was
to closely mimic the use case seen in ATLAS distributed computing in terms of client libraries, object sizes, connection counts, and
request rates. This was achieved by using Kubernetes clusters to scale the number of concurrent client processes at a level expected
to be seen on Grid resources. Initial results show some interesting differences and bottleneck on both the storage side and client side.
The decision to use Kubernetes as a platform has highlighted the need to understand the details of such a system compared to
traditional running on local platforms. Differences in site behaviour are observed and feedback to site operators has proven useful for
their deployments. Much larger scale and more distributed tests are planned and we expect these to provide a better understanding of
object store performance and limits.

Object store characterisation for ATLAS
distributed computing

Doug Benjamin1, Alastair Dewhurst2, Peter Love3, Jaroslava Schovancova4, on behalf of
the ATLAS Experiment

1. Duke University 2. STFC 3. Lancaster University 4. CERN

• 30k objects were transferred to each object store
• Client script was a single threaded process running

within a Kubernetes Pod with 1000 replica
• Transfer times at the 99th percentile were noted and

have large variation, consistent with the latency
between client and object store geographical location

• Distribution of transfer times show distinct pattern
with AGLT2 and RAL having an interesting plateau at
longer times in addition to the spike of quicker
transfers.

Site 99th percentile
AGLT2 1.7s
CERN 1.7s

LANCS 23s
MWT2 1.0s

RAL 7.0s

Results
Comparing the first 10k
transfer with the last 10k
transfers at RAL (left) show
a different distribution of
times
There is no particular reason
to see this effect, as shown
by the results for MWT2
(right)

We acknowledge the
collaboration with colleagues at
the following Institutions.

Regular functional tests are managed through
the well-established HammerCloud platform.
All object stores used by ATLAS are instances
of Ceph. There are currently four deployments
at research institutions (AGLT2, CERN,
MWT2, RAL) and 1 commercial deployment
(LANCS).
Hammercloud functional tests provide a long
term view of instance health.

Site-based monitoring
shows typical throughput
bandwidths of 100-200Mbps
for a small-scale test of
~1000 simultaneous
connections.
AGLT2 (left) MWT2 (right)

These simple transfer tests are a good start to
characterising the object store performance and raise a
number of questions about the deployment details of
Ceph.

Various workflows used by ATLAS Distributed Computing (ADC) are
now using object stores as a convenient storage resource using the
widespread S3 interface. The typical load produced by these use
cases vary widely across the different workflows and for heavier
cases it has been useful to understand the limits of the underlying
object store implementation. This work describes the performance of
object stores currently used by ADC and describes a tool which run
periodic functional tests and on-demand stress testing. Initial
measurements of transfer times have been made using object of
similar size to the ATLAS Event Service use case.

Example of an 8-node
Kubernetes cluster run on
Google Compute Engine.

Spinning up an 8-node Kubernetes cluster on Google Compute
Engine (GCE) takes only a few minutes. This would provide enough
resource (vcpu) for ~1000 client Pods. We have encountered various
limits within the GCE which need to be understood prior to scaling
further.

Scaling to 10k connections is planned by simply deploying a larger Kubernetes
cluster and different issues are expected to be seen at this level.

