
Using the autopilot pattern to deploy container 
resources at a WLCG Tier-2

Containers are becoming ubiquitous within the WLCG with CMS announcing a requirement for Singularity at supporting sites in 2018. The ubiquity of 
containers means it is now possible to reify configuration along with applications as a single easy-to-deploy unit rather than via a myriad configuration 
management tools such as Puppet, Ansible or Salt. This allows more use of industry devops techniques such as Continuous Integration (CI) and Continuous 
Deployment (CD) within the operations domain, leading to faster upgrades and more secure systems.

One interesting technique is the AutoPilot pattern [1] which provides mechanisms for application lifecycle management from within the container itself. Using 
modern service discovery techniques each container manages its own configuration, monitors its own health and adapts to changing requirements through 
the use of event triggers. 

In this work, we use Consul [2] as a mechanism for distributed service discovery allowing containers to register and retrieve configuration information, and 
Container Copilot [3] to manage the processes and services running within each container.

Service Discovery via Consul

Gareth Roy*, David Crooks, Gordon Stewart, Samuel Skipsey, David Britton
School of Physics and Astronomy, University of Glasgow, G12 8QQ, Scotland

*gareth.roy@glasgow.ac.uk

Container Lifecycle

T
im

e

Container Start

Container Stop

C
on

ta
in

er
 P

ilo
t

C
on

su
l A

ge
nt

on
S

ta
rt

on
S

to
p

H
T

C
on

do
r

H
ea

lth

pre-Configuration

post-Cleanup

H
ea

lth

Automated
Health Checks

Container Copilot acts as an init system (similar to 
systemd) within the container itself. When a 
container is instantiated, its entrypoint is set to run 
the Container Copilot binary. This binary carries 
out a set of pre-configuration tasks and then runs 
and manages any jobs given to it. In our system, 
we use it to start both a Consul agent along with 
the HTCondor master daemon. 

Each instantiated container registers its existence 
with the main Consul cluster allowing automated 
discovery of all the HTCondor endpoints; this 
allows instantiated containers to be added to site 
monitoring tools such as Prometheus as well as to 
match container IDs to servers for auditing 
purposes.

Container Copilot requires the specification of 
Healthchecks for all jobs run by it. This allows 
local periodic monitoring which can carry out 
repair actions (like restarting stuck daemons) as 
well as registering state to the Consul service 
discovery layer. This leads to the construction of 
dynamic self-healing systems.

Using the AutoPilot pattern we have been able to create containers capable of running WLCG 
payloads that manage their own configuration and lifecycle. These containers use modern service 
discovery techniques to register their existence which allows automated monitoring and logging to take 
place.

Additionally, built-in health checking allows each container to monitor its current state, report on its 
health and take appropriate action to self-heal. It is hoped that applying these techniques across a 
WLCG Tier-2 site will lead to reduced downtime for resources and an overall reduction in the amount 
of manpower required to run such a site.

Conclusion

[1] http://autopilotpattern.io
[2] https://consul.io
[3] https://github.com/joyent/containerpilot

Container Pilot

Consul
Health Check

HTCondor

Experimental
Payloads


