
Monitoring batch system jobs with container-oriented tools enhanced by LRMS
job data and distributed over CVMFS

Monitoring HEP-jobs like containers
Since microservices as containers, have become en-vogue, various monitoring
tools have been emerged. While such tools are primarily focused on Docker as
the framework with the largest followership, these tools can be put to use also
for a more generic approach. Since containers are based on standard kernel
features to encapsulate processes with their own environments in dedicated
namespaces and cgroups, these container monitoring tools can be reused
more generically for any kernel resources in cgroups.

While containers and container orchestration frameworks are becoming more
established as LRMSes alongside traditional batch systems, batch systems as
HTCondor [2] or Slurm are prevalent in the HEP world as the workloads of the
Grid computing communities have evolved along these.

Since both, batch systems and container frameworks, use the same kernel
features for resource management and control on hosts, it suggests itself to
refit established off-the-shelf tools for monitoring.

We chose Google’s cAdvisor [1] as lightweight tool without further
depoendencies and a rich REST API.

We deploy cAdvisor and our Logstash-based extension as Singularity
containers via CVMFS

Containerized Batch System Monitoring.

We enrich the standard cAdvisor statistics for each HTCondor job by details from
the jobs’ environments. While HTCondor provides tools to poll job and slot
ClassAds, we decided to extract ClassAd values, which are static over a job‘s
lifetime, from the process itself.
Likewise, we evaluate the initial job environment to extract further job details.

Using only the file system allows to minimize the load on HTCondor daemons as
well as opens up an exercise path for a more generic approach. For example, to
collect information from other batch systems or for initial environment variables
set by users.

After polling locally the base stats as JSON blobs from cAdvisors REST API and
extending these without our own stats, we forward the per job JSON data to our
ELK [3] monitoring infrastructure

Expanding HTCondor Job Details

Logstash
Initially, we envisaged Logstash as primary tool to aggregate data and forward them to our
Elastic Search instance
• self-contained Singularity container via official Logstash builds on Dockerhub
• entry points: either plain Singularity run or as Singularity instance
• dependency on the cAdvisor instance
• aggregator scripts triggered by Logstash
• site-specific parameters, job environment variabls and machine ClassAds dynamically
settable via SINGULARITY_ENV variables in the environment

Aggregation Paths

During the setup of the monitoring service, valuable experiences could
be gained on the inner workings of systemd and CVMFS
• code clean-up and refactoring
• more injection friendly for other additions
• from other LRMSes as SLURM
• investigate how per node polling current Condor internal state
information/chirp scales over LAN

• include details from jobs on the National Analysis Facility
• friendly interface for end user, e.g., in Grafana
• Evaluate, if/how cgroup network controllers as network can be added
to gain also per job network statistics (excluding NFS4)

Next Steps

 1 2 3

Filebeat
When the Filebeat setup for generic log output aggregation got secured communication channels to comply with the GDPR for sensitive data, we added optionally a
simple file output. As advantage, one can use existing aggregation paths.
As no service is necessary within the container, a simple timer and service unit can periodically call the aggregation scripts.

Job Visualization

Historic Job Statistics
The aggregated statistics per job slot can be
sliced and selected for example per job, user or
group level. E.g., a job’s memory and CPU
evolution selected by it’s ARC CE ID or it’s
HTCondor job ID.

Node Utilization View
Additionally, cAdvisor brings also a build-in web
server to visualize a host’s current utilization.
Thus, if a system administrator has to debug a
node, he or she can gain quickly a graphical
overview of the current user loads with one port
forwarding.

Evolution of a CMS multi-core job with internal scheduling

View on a node on the current
status of a CMS multi-core job

	Folie 1

