
Managing an heterogeneous scientific computing

cluster with cloud-like tools: ideas and experience

Marco Aldinucci1, Stefano Bagnasco2, Matteo Concas3, Stefano Lusso2, Sergio Rabellino1, Sara Vallero2

1C3S and Computer Science Department, University of Torino

2C3S and Istituto Nazionale di Fisica Nucleare, Torino

3C3S, Politecnico di Torino and Istituto Nazionale di Fisica Nucleare, Torino

 CHEP18 – Sofia Jul 9-13, 2018

Cloud computing infrastructure:

●  Focus on rapid on-demand resource provisioning

●  Virtualization-based, designed to host services

●  Flexibility and scalability

Traditional HPC cluster:

●  Focus on maximum computing performance

●  Queue based, designed for batch-like

processing

●  Special hardware (low-latency networks,

hardware accelerators,…)

A scalable
service

Another service

Queue
manager

RAM

CPU W
or

ke
rs

● “Dp
 batch system as-a-service

Core concept: Scientific Computing Application, defined by:

●  Runtime environment (application software, libraries,configurations,…)

We use Linux containers to package the full application runtime environment and provide a virtualization layer free from performance
penalties, leveraging on the Docker ecosystem to allow users to re-use off-the-shelf images and decouple application support from infrastructure
support.

●  Resource requirements (CPU, memory, GPU, low-latency network, storage,…)

Resource requests are granted by a reservation-allocation mechanism; in the final architecture, Apache Mesos frameworks will manage
resources and manage all inter-application scheduling.

●  Execution model (batch-like, single image interactive, pipeline,…)

Different execution models are supported by deploying compositions of the relevant management and execution services. Most complete
example: Batch System as-a-service (see below).

overall occam architecture
Access &

management

Virtual Batch Farm

Workflow
manager

Virtual workstation

Virtual workstation

(Coming soon)

A B C

Dockerized HTCondor-based batch farm

●  All farm components are packaged in separate Docker containers: they can be started as Mesos tasks or with the usual ‘docker run’

command.

●  Configuration parameters passed as ‘docker run’ arguments end-up as parameters to the entrypoint script

●  Tini (https://github.com/krallin/tini) and Supervisord (http://supervisord.org/) to start required services

●  Expose health status and custom metrics (HTTP endpoint on port 5000)

●  Access through “bastion service” containers running on the OCCAM front-end

Orchestration: automatically deploy a scalable batch system virtual cluster

●  Apache Mesos for resource abstraction and management

●  Marathon to schedule cluster components as long-running services

●  Alternatively, HTMFrame: a custom Scala implementation of the Mesos Scheduler Driver github.com/svallero/HTMframe

§  Implements custom policies on Mesos resource offers to instantiate roles in the correct sequence, health-check them and reinstantiate upon failure

§  Auto-scaling of the cluster according to HTCondor metrics

Networking: isolation via private L3 overlay networks, managed by Calico

●  ACLs to manage access from the bastion service to different networks

●  Mesos-DNS for service discovery

●  The Open Computing Cluster for Advanced data
Manipulation (OCCAM) is a multi-purpose heterogeneous HPC
cluster operated by C3S, the Scientific Computing Competence
Centre of the University of Torino.

●  It caters to a very diverse user community, prompting the
adoption of an innovative management model that borrows
several Cloud Computing concepts, based on tools developed by
the INDIGO-DataCloud EU project.

the occam cluster

●  The OCCAM cluster is a production facility that had to run user workloads since the very beginning, so there is very small room
for R&D activities and the adoption of the final architecture is gradual, using a DevOps approach.

●  For example, single-node applications, i.e. “virtual workstations” with access to high-memory 4-way nodes or GPUs, and pipeline-
like applications are not yet managed by Mesos but by custom tools allowing users to run their Docker containers on the cluster
in a secure way.

●  However, the user workflow is defined and we plan to gradually reach the final configuration without changing the user interface
semantics.

project status and performance studies

●  We have been operating the OCCAM cluster
for more than one year using an innovative
cloud-like management model based on
deploying virtual clusters tailored for
specific Scientific Computing Applications

●  We adopted a two-level scheduling
mechanism, with in-application scheduling
managed by HTCondor and inter-
application scheduling managed by Mesos
frameworks

●  By directly using Docker instead of
Singularity or Shifter we simplified the
software stack and were able to exploit a
wider software ecosystem

●  Several Computing Applications have been
run on the system, generally with a
reasonable learning curve for the adoption
of containers, and remarkable stability in
production mode

●  Even though the system is not yet running
in its final architectural configuration, the
first operational experience and
performance tests imply that the model is
viable and, indeed, provides access to
resources to communities usually excluded
from larger conventional HPC facilities.

conclusions

…

farm.c3s.unito.it

submitter master

executor executor

SERVICES
Calico (L3)

FARM 1
Calico (L3)

FARM N
Calico (L3)

LAN

submitter master

User

User keypair

bastion
Another keypair

Submit Machine
(schedd)

Executor Machine
(startd)

Executor Machine
(startd)

Executor Machine
(startd)

Executor Machine
(startd)

Executor Machine
(startd)

Central Manager
(collector + negotiator)

TO
TG

RA
 T

EL
AP

SE
 (s

)

0

7500

15000

22500

30000

CORES
0 16.667 33.333 50 66.667 83.333 100

y = 427583x-0.9672

y = 406542x-0.9426 OCCAM HOSTS
OCCAM CONTAINERS

Occam vs. Marconi

Physical hosts vs. containers

TO
TG

RA
 T

EL
AP

SE
 (s

)

0.01

0.10

1.00

10.00

CORES
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

MARCONI (fast)
OCCAM HOSTS

TO
TG

RA
 T

EL
AP

SE
 (s

)

0

7500

15000

22500

30000

CORES
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

y = 406542x-0.9426

y = 66996x-0.8754
MARCONI (fast)
OCCAM HOSTS
MARCONI

RESCALED @ 72 CORES

Same scaling behavior

Amdahl’s law

RA
TI

O

0.900

0.950

1.000

1.050

1.100

CORES
0 16.667 33.333 50 66.667 83.333 100

PHYSICAL HOSTS / CONTAINERS

Average over 5 measurements, the error is the Standard Deviation

TO
TG

RA
 T

EL
AP

SE
 (s

)

0

7500

15000

22500

30000

CORES
0 16.667 33.333 50 66.667 83.333 100

y = 427583x-0.9672

y = 406542x-0.9426 OCCAM HOSTS
OCCAM CONTAINERS

Occam vs. Marconi

Physical hosts vs. containers

TO
TG

RA
 T

EL
AP

SE
 (s

)

0.01

0.10

1.00

10.00

CORES
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

MARCONI (fast)
OCCAM HOSTS

TO
TG

RA
 T

EL
AP

SE
 (s

)

0

7500

15000

22500

30000

CORES
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

y = 406542x-0.9426

y = 66996x-0.8754
MARCONI (fast)
OCCAM HOSTS
MARCONI

RESCALED @ 72 CORES

Same scaling behavior

Amdahl’s law

RA
TI

O

0.900

0.950

1.000

1.050

1.100

CORES
0 16.667 33.333 50 66.667 83.333 100

PHYSICAL HOSTS / CONTAINERS

Average over 5 measurements, the error is the Standard Deviation

5

MPI jobs and InfiniBand

Calico net

InfiniBand

Executor role configuration (Marathon)

Network performance degradation
due to virtualization and L3 overlay:

• TCP bandwidth ~ 20%

• TCP latency ~ 30%

• RDMA ~ negligible

Factor 2-7 improvement with InfiniBand

Roundtrip blocking communication between 2 farm
nodes (mpptest suite on OpenMPI)

Nominal connection:
• 10 Gbps Ethernet

• 56 Gbps InfiniBand

Networking performance:

●  As measured with qperf

●  TCP performance penalty due to the Calico networking

between containers

●  However, no latency or bandwidth degradation on

InfiniBand (directly exposed as a device in the container)

Scalability:

●  Using CRYSTAL, a widely used MPI computational

chemistry software

●  No performance penalty between containers and running

the same directly on hosts

●  No difference in compoarison with a conventional HPC

cluster (CINECA’s Marconi)

