
Developing a Software Management and Testing
Platform-as-a-Service for Research Software

Andrew Washbrook1
1University of Edinburgh

There is a growing requirement to incorporate sustainable software practices into High Energy Physics experiments. Widely supported tools offering source code
management, continuous integration (CI), unit testing and software quality assurance can greatly help improve standards. However, for resource-limited
projects there is an understandable inertia in deviating effort to cover systems maintenance and application support for additional tools. Although basic free code
hosting options are widely available, premium support and hosting costs may become prohibitive as projects increase their software testing footprint.

Here we describe the development of a Platform-as-a-Service (PaaS) solution that combines software management and testing applications into a consolidated
service. This solution provides an easy to deploy sandbox environment for projects wishing to evaluate the functionality of a full code management and testing suite
without needing an initial outlay for an on-premise or hosted solution. The approach also provides a pathfinder exercise to create a federated network of software
projects that can take advantage of cost-effective resource pooling and facilitate the reuse of common software testing patterns.

Motivation

Figure 1 Deployment and
development
lifecycle of a PaaS
Research Software
instance

A functioning prototype was built to demonstrate how a PaaS solution could meet the desired
objectives. All service components were hosted in the Microsoft Azure cloud. Gitlab was
chosen as a candidate software management platform based the availability of a native CI
pipeline and the relative ease of deployment. Kubernetes (and by extension the Azure
Kubernetes Service) provided the orchestration of Gitlab CI Runner containers executed as
part of the CI testing workflow (Figure 2).

A schematic of the prototype and the proposed development lifecycle is shown in Figure 1. In
a cloud computing environment seemingly complex deployment requests can be performed in
relatively few steps. Figure 3 demonstrates how a new kubernetes cluster deployment can be
performed on the command line [1]. A scale testing suite was developed to simulate code
submissions and review actions sent to a running platform instance (Figure 4). This enabled
scaling response, load balancing and resource accounting to be accurately evaluated.

Prototype Development

The success of a proposed research software PaaS relies upon agile deployment, accurate resource accounting and seamless service orchestration with infrastructure
implementation details hidden from the end developers. A working prototype is in place and early adopters based in the UK Research Software community will be
encouraged to navigate the platform and provide feedback on how the service can be further developed. At the end of the evaluation period the deployment and user
experiences will be reviewed in anticipation of the development a more robust and community supported platform.

Outlook

A multi-tenancy platform could be used to encourage cross-project collaboration on software development, code review, and
the sharing of common testing patterns. A naive consultation framework was created to determine how a collaborative
approach could be devised in practice by leveraging the chosen technologies chosen in our PaaS prototype (Figure 5). This
approach has been inspired by the code review process adopted by the ATLAS experiment [2].

To engage with a consultant a developer would first create a new fork from their active code branch (1) and initiate a merge
request discussion using labels to designate the scope of their request (2). This triggers an action to poll a matching engine
which assigns the request to a suitable consultant from an available pool (3). The assigned consultant then provides effort to
satisfy the request (4). Once the outcome is agreed the developer merges changes back into their branch (5). Feedback on
the consultation is then solicited from the developer triggered by the closure of the merge request (6). Effort could be
assessed through evaluation metrics ranging from a simple karma increment to a more involved template to qualify items such
as impact, quality and time to delivery.

Cross-Project Collaboration

Figure 2 Representative
Gitlab CI pipeline
for code in the
prototype Figure 3 Azure CLI

command to create
a new kubernetes
cluster

Figure 4 Scale testing suite
to monitor PaaS
performance

Figure 5 Code consultation
workflow

[1] Deploy an Azure Kubernetes Service (AKS) cluster
https://docs.microsoft.com/en-us/azure/aks/tutorial-kubernetes-deploy-cluster

[2] Modernising ATLAS Software Build Infrastructure
https://indico.cern.ch/event/567550/contributions/2627121/

