
PanDA and RADICAL-Pilot Integration:
Enabling the Pilot Paradigm on HPC Resources

Andre Merzky, Matteo Turilli, Pavlo Svirin

CHEP 2018, Sofia, Bulgaria

Motivations

● Removing the need for users to acquire resources and
schedule payloads on HPC using their own means

● Investigate the advantages of scale, flexible execution
and interoperability outside production constraints on
HPC resources.

● Supporting backfill/regular queueing on Titan; concurrent
execution of workloads on the same pilot; distribution of
jobs on Titan and Summit supercomputers.

!2

RADICAL-Pilot (RP) is a runtime system designed to execute
multiple types of scientific workloads on pilots instantiated on one
or more resources.

• developed by a RADICAL group of Rutgers university
• enables the description of generic workloads with one or more

scalar, MPI, OpenMP, multi-process, and multi-threading tasks.
• workloads can be executed CPUs, GPUs and other

accelerators, on the same pilot or across multiple pilots.
• support for both CPU and GPU, exclusive or concurrent.

• optimization and dedicated scheduler.
• executions up to 131K cores on Titan.

RADICAL Pilot

!3

RADICAL Pilot architecture

capabilities update the user about ongoing executions and profiling capabili-
ties enable detailed postmortem analysis of workload executions and runtime
behavior.

3.1 Architecture and Implementation

RP is a distributed system with four modules: PilotManager, UnitManager,
Agent and DB (Fig. 1, purple boxes). Modules can execute locally or remotely,
communicating and coordinating over TCP/IP, and enabling multiple deploy-
ment scenarios. For example, users can run PilotManager and UnitManager lo-
cally, and distribute DB and one or more instances of Agent on remote comput-
ing infrastructures. Alternatively, users can run all RP components on a remote
resource.

Fig. 1: RADICAL-Pilot architecture.

PilotManager, UnitManager and
Agent have multiple components, iso-
lated into separate processes. Some
of the module’s components are used
only in specific deployment scenar-
ios, depending on both workload re-
quirements and resource capabilities.
Components are stateless and some of
them can be instantiated concurrently
to enable RP to manage multiple pi-
lots and units at the same time. This
enables scaling of throughput and tolerance to failing components. Concurrent
components are coordinated via a dedicated communication mesh, which intro-
duces runtime and infrastructure-specific overheads, but improves overall scal-
ability of the system and lowers component complexity. Components can have
di↵erent implementations, configuration files can tailor RP toward specific re-
sources types, workloads, or scaling requirements.

PilotManager has a main component called ‘Launcher’ (Fig. 1). The Launcher
uses resource configuration files to define the number, placement, and properties
of the Agent’s components of each Pilot. Currently, configuration files are made
available for essentially all US NSF and DOE production resources as well as
Beowulf variants, but users can provide new files or alter existing configuration
parameters at runtime, both for a single pilot or a whole RP session.

Agent has four main components: one Stager for input and output data,
Scheduler and Executor (Fig. 1). Multiple instances of the Stager and Execu-
tor components can coexist in a single Agent. Depending on the architecture
of the resource, the Agent’s components can individually be placed on cluster
head nodes, MOM nodes, compute nodes, virtual machines, or any combina-
tion thereof. ZeroMQ communication bridges connect the Agent components,
creating a network to support the transitions of the units through components.

Once instantiated, each Agent’s Scheduler gathers information from the re-
source manager (RM) retrieving the number of CPUs (cores) and GPUs held
by the pilot on which the Agent is running and how those cores are partitioned

• a distributed system with four modules: PilotManager, UnitManager, Agent and DB

• modules can execute locally or remotely, communicating and coordinating over TCP/IP, and
enabling multiple deployment scenarios

Pilots: placeholders for computing resources, where resources are represented independent from
architecture and topological details.

Computing Units are units of work, specified as an application executable alongside its resource
and execution environment requirements.

!4

RADICAL Pilot Workflow

across nodes. Currently, the Scheduler acquires information from physical or
virtual Linux machines and the following RMs: TORQUE, PBS Pro, SLURM,
SGE, LSF, LoadLeveler, and Cray CCM.

Depending on requirements, the Agent’s Scheduler assigns cores and GPUs
from one or more nodes to each unit. For example, cores on a single node are
assigned to multithreaded units while, cores on topologically close nodes are
assigned to MPI units to minimize communication overheads. Two scheduling
algorithms are currently supported: “Continuous” for nodes organized as a con-
tinuum, and “Torus” for nodes organized in an n-dimensional torus, as found,
for example, on IBM BG/Q.

The Agent’s Scheduler passes the units on to one of the Agent’s Executors,
which use resource configuration parameters to derive the launching command of
each unit. Currently, RP supports the following launching methods: MPIRUN,
MPIEXEC, APRUN, CCMRUN, RUNJOB, DPLACE, IBRUN, ORTE, RSH,
SSH, POE, and FORK. Among these, ORTE (Open RunTime Environment)
enables scaling pilots on leadership-class machines beyond the limited amount
of concurrent process allowed by methods like APRUN, MPIEXEC or MPIRUN.

Once the launching command is determined and further qualified depend-
ing on the unit parameters and on the characteristics of the execution envi-
ronment, the Agent’s Executors will execute those commands to spawn the
application processes. Di↵erent spawning mechanisms are available: “Popen”
(based on Python), “Shell” (based on /bin/sh, and “ORTELIB” (based on the
libopen-rte API, bound to Python via CFFI). Executors monitor the execu-
tion of the units, collect exit codes, and communicate the freed cores to the
Agent’s Scheduler.

3.2 Execution Model

Workloads and pilots are described via the Pilot API and passed to the RP
runtime system (Fig. 1, 1). The PilotManager submits pilots on one or more
resources via the SAGA API (Fig. 1, 2). The SAGA API implements an adapter
for each supported resource type, exposing uniform methods for job and data
management. Once a pilot becomes active on a resource, it bootstraps the Agent
module (Fig. 1, 3).

Fig. 2: RADIAL-Pilot execution model.

The UnitManager schedules each
unit to an Agent (Fig. 1, 4) via
a queue on a MongoDB instance.
This instance is used as the RP DB
module to communicate the workload
between UnitManagers and Agents.
Each Agent pulls its units from the
DB module (Fig. 1, 5) schedules each
unit on the Executor when the re-
quired amount of computing resources are available (e.g., number of cores or
GPUs). The Executor sets up the unit’s execution environment and then spawns
the unit for execution.

!5

Next Generation Executor and integration with PanDA

● RADICAL Next Generation Executor (NGE):
○ Persistent service with a REST interface hosted on a Titan’s login node.
○ Uses a database to hold resource and task states: #cores and walltime;

submitted, executing done.
○ internally uses Radical-Pilot as workload executor. 

• Investigate options for integration of Harvester (Next-generation edge service for
PanDA, see presentation by Tadashi Maeno) and NGE in terms of BigPanDA project:

◦ Investigate the scalable, flexible execution and interoperability outside production
constraints

◦ Support both backfill and regular queueing capabilities at the same time on Titan
◦ Support different types of workloads
◦ Support concurrent execution of multiple workloads on the same pilot
◦ Loose coupling among independently developed services deployed at ORNL
◦ Enable concurrent distribution of jobs on multiple OLCF resources, e.g., Titan and

Summit
!6

PanDA-NGE Integration: Architecture

!7

NGE Performance: Null Workload Execution

● Characterization
and comparison of
null workload
execution time with
NGE and RP in
different
deployment
scenarios.

● NGE and RP have
similar performance

!8

NGE Performance: Resource Acquisition

Pilot queue and bootstrap & workload submission time: NGE and RP
have analogous performance

!9

NGE Performance: Termination

Pilot cancellation and stack termination time: NGE and RP have
analogous performance.

!10

Successful setup on Titan

PanDA Server @ EC2

dtn35

Harvester

titan-ext3

NGE

• An integration between NGE and PanDA has been successfully tested on
Titan

• All of the elements of the chain (job submission to PanDA Server, job
fetching by Harvester, submission and execution on Titan through NGE)
working

!11

MongoDB

titan mom nodes
Agent

titan worker nodes
RP

Conclusions and future plans

● Integration between PanDA and NGE was set up and tested
● Several workflows have been tested on Titan with PanDA/NGE:
● Ready to start end-to-end execution of Molecular Dynamics use cases.
● ATLAS simulation jobs in a Singularity container

Future plans:
● Extending profiling and analytics capabilities of NGE stack to Harvester

stack, enabling fine-grained characterization of MD workload executions.
● Support Summit on NGE: no change should be needed in Harvester,

showing the potential for the isolation of concerns enabled by the design of
the Harverster/NGE integration.

● Port design features to Yoda on the base of the results of our
characterization.

!12

