

The XENON1T Data Distribution and Processing Scheme

University of Chicago:

Robert Gardner Luca Grandi Benedikt Riedel Evan Shockley Judith Stephen Suchandra Thapa

Stockholm University:

Boris Bauermeister Jan Conrad

Center for High Performance Computing:

Daniel Ahlin Ragnar Sundblad

On behalf of the XENON collaboration

CHEP 2018 12th July Sofia/Bulgaria

The XENON1T Collaboration

What are we doing:

Looking for particle Dark Matter with 3.5 tons of liquid xenon in a dual phase time projection chamber (TPC)

A worldwide collaboration:*

- 25 institutes
- >150 members

Dark Matter Detection with Liquid Xenon (I):

Probe and distinguish for different recoil types

- Electron recoil (ER)
- Nuclear recoil (NR)

Expected from Dark Matter interaction:

--> Single scatter NR-like recoil type

Dark Matter Detection with Liquid Xenon (II):

XENON10

XENON100

2005-2007	2008-2016
25 kg	161 kg
15 cm	30 cm
89	242
	2005-2007 25 kg 15 cm 89

Raw data storage, processing, tape and analysis at the LNGS

2012-2018

3200 kg

100 cm

248

• Storage and processing at several computing facilities (worldwide, GRID)

476

2019-20??

~8000 kg

144 cm

 Research Computing Center (RCC) for analysis in Chicago

The latest XENON1T Result

X/Y positions of unblinded events. Pie charts present probability of signal and background component under 200 GeV/c2 best-fit Wimp model

- 278.8 life days
- Fiducial mass: 1.3 t
- Electron recoil background rate of 82 events/(t×yr×keVee)
- No significant excess over background is found
- Exclude above 4.1×10^{-47} cm² at 30 GeV/c² (C.L. 90%, SI)

Usually the talk ends here!

The XENON1T Raw Data Overview

Source	Size per Event (MB)	Total Events per year (x 10 ⁶)	Storage (PB/year)	Data Type
Background	2.01	139	0.279	Science
^{83m} Kr	0.78	66	0.051	Calibration
²²⁰ Rn	0.67	145	0.097	Calibration
Neutron Generator	2.71	4.5	0.013	Calibration
LED	0.12	192	0.023	Calibration
Total		546.5	0.463	

Storage Usage in XENON1T as of 26th of March 2018

Number of Files	2.03 x 10 ⁶
Number of Datasets	19877

Use Rucio for data distribution:

- Developed by the ATLAS collaboration
- XENON integrated Rucio in its workflow (Ruciax)
- Advantage: highly flexible in usage
 - -- Add GRID storage easily
 - -- Data distribution is done only within Rucio

The XENON1T Data Workflow: Data at Three Stages

Ι

Raw data uploaded to Rucio and distributed

"Raw data"

Description:

- Waveforms
- compressed zip files

Purpose:

- Waveform watching
- Kept for reprocessing

Processing on OSG and EGI

- ed file
- Root files
- Contain reduced information
- Much smaller (No waveforms)
- (Re-) processing if necessary in well planned campaigns
- Stored at RCC Chicago

- In case analysts decide to work with processed files directly
- Analysts can define own Minitrees for their analysis

Second processing on RCC Chicago

- Extract important variables for data analysis
- Add corrections (e.g. for drift time)
- No heavy reprocessing campaigns
- Used by almost all of our analysts

- Data handling (CAX-TSM, Ruciax, maintenance tools, job submission,...)
 is organized by the CAX (Copying All XENON1T) toolbox.
- Processing is handled by PAX (II) and HAX (III) in XENON1T

Stockholm University

The XENON1T Data Distribution Scheme:

Rucio Storage Elements

The XENON1T Data Distribution Scheme:

The XENON1T Data Distribution Scheme:

The XENON1T Data Distribution Scheme:

Tape Stockholm

The XENON1T Disk Allocation and Requirements

Data have two copies:

New data:

• US: OSG dCache at UChicago

(hold only relevant data)

• Europa: One of several computing

centers

Old data:

• Two RSEs in Europe

Tape copy in Stockholm --> Independent of Rucio

In total:

- Rucio: ~1.5 / 3.5 PB Main contributes: CNAF & CCIN2P3

- Tape only: 2 PB (Stockholm)

- 155 TB (RCC Chicago)

Location	Diskspace
CCIN2P3 (Lyon)	1100 TB
CNAF (Bologna)	1070 TB
Weizmann	80 TB
NIKHEF/SURFsara (Amsterdam)	775 TB
OSG (Chicago)	475 TB
Total	475 TB 3.5 PB

Processing and Montecarlo Jobs in XENON1T

Successful GRID job submission since October 2016:

Wallhours in XENON1T

- Job submission is implemented in CAX (developed by the XENON collaboration)
- Use OSG GlideinWMS infrastructure
- Job submission to:
 OSG, EGI, NSF Supercomputer COMET
 (SanDiego), RCC (Chicago)

- Constant processing of raw data
- Reprocessing if necessary

Montecarlo simulations on GRID allow a full XENON1T simulation (e.g. different calibration sources)

Outlook: XENONnT

Most important:

- Based on the XENONnT design we expect at least twice as much data!
- Detectors: TPC, MuonVeto, NeutronVeto
- Schedule for mid 2019 (data taking)

- Each raw data set triggers a MC production with actual detector conditions
- Distributed by Rucio
- Investigate data reduction techniques (DAQ / Processor level)
- Extensive MC support in XENONnT for data analysis
- Continue with full GRID solution:
 - Rucio storage elements
 - Job submission system

Ongoing: Improve and develop data management tools for XENONnT

XENONIT

- RUCIAX, CAX-TSM, CAX as part of the CAX toolbox
 - -- handling several tasks regarding data management and processing
- Allocated disk space at the moment ~ 1.5 PB
 - -- multiple copies, 6 RSEs worldwide
- Data taking continues!
 - -- Science data ("Science run 2" everything after 01.02.2018)
 - -- ³⁷Ar calibration
- Further physics analysis are ongoing
 - -- e.g. event rate modulation, double electron capture

XENONnT

- Continue with GRID infrastructure for
 - -- Data distribution with Rucio
 - -- Processing of raw data
 - -- New: full detector MonteCarlo simulations
- Introduce an intermediate level of data (reduced raw)
- Improve and develop tools (a "new" CAX):
 - -- Upload/Download/Transfer in Rucio
 - -- Job submission
- Data reduction is under investigation

Backup Slides...

Backup: The XENON1T Infrastructure

Backup: XENON1T Bookkeeping

The XENON runDB (@LNGS) keeps track on meta information:

- Trigger information
- Time stamps
- Calibration source
- Data locations and transfer status

A web interface allows us to check for:

- Data transfers status (Rucio and non-Rucio)
- Data processing status

Example from the web interface

Backup: The XENON1T Data Management Toolbox CAX

RUCIAX, CAX-TSM are

- Part of the same toolbox CAX (Github)
 - -> Several experts develop different parts
- Serve different purpose based on "tasks" (CAX) or applications (RUCIAX, CAX-TSM)
- Language: Python 3.4
- But: Rucio is Python 2.6

Python 2.6 vs. Python 3.4

the "language barrier" to talk to Rucio with RUCIAX

Several configurations but:

 Mounted: cvmfs at several hosts to provide all our software tools

We needed to overcome

- Anaconda manages different Python versions and offers:
 - Data managment and processing tools (e.g. CAX, RUCIAX, CAX-TSM, Rucio)
 - Analysis tools: e.g. root, python, jupyter-hub, serveral
 - softwrware developed for XENON1T

For example:

RUCIAX is executed to update XENON runDB locations

Heavy usage of Rucio command line interface (CLI)

Backup: Outlook towards XENONnT

Update: Software

- Independent tool to handle:
 - the extended data structure (reduced and processed data in Rucio)
 - RucioAPI instead of CLI
 If new Rucio server is in Python 3.x
 - The tape storage (CLI for TSM)
- Independent tool for job submission
 - Job submission is adjusted according to reduced and processed data sets
- CAX to handle tasks (similar to XENON1T)

Update: Requirement on data safety (& tape)

- Keep latest raw data in Rucio on dedicated tape storage.
- Move older raw data to PDC/Stockholm

Allow quick first level reprocessing if necessary

RestAPI for XENON runDB access

Source	Size per Event (MB)	Total Events per year (x 10^6)	Storage (PB/year)
Background	3.62	278	0.502
83mKr	1.4	198	0.277
220Rn	1.21	145-436	0.194-0.528
Neutron Generator	1.21	4.5-135	0.054-0.164
LED	0.24	192	0.046
Total		817.5-1239	1.073-1.517

Estimated sizes for XENONnT raw data