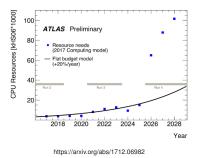


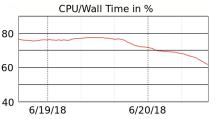
Modeling and Simulation of Load Balancing Strategies for Computing in High Energy Physics

<u>René Caspart</u>¹, Patrick Firnkes², Manuel Giffels¹, Anne Koziolek², Günter Quast¹, Ralf Reussner², Maximilian Stemmer-Grabow²


www.kit.edu

KIT - The Research University in the Helmholtz Association

Motivation


- Flat computing budget model does not cover future needs for computing resources
- Most efficient usage is mandatory

- Computing resources for user jobs in HEP will be increasingly distributed and heterogeneous
 - Addition of cloud resources like HNSciCloud and AWS
 - Institute clusters and Tier 3 centers
- Different job types and mixtures optimal for each resource
- Data placement will be more dynamic
 - Fewer centers hosting data
 - Leads to increase remote access

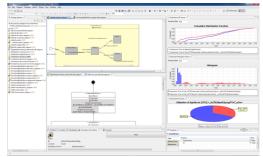
Scheduling as a key component

- Already for the current resources efficient scheduling for jobs is a challenge
- Even more important for distributed heterogeneous resources in the future
- Need to find ways to simulate the usage efficiency of these resources with different scheduling approaches

Approach

Simulate these resources using different scheduling approaches

- Need to model workflows and resources
- Need to implement different scheduling approaches
- Check the effect of these approaches on the usage efficiency
- Make use of the Palladio Simulator^[1]
 - Established tool in the computer science community
 - Actively developed and used by computer scientists at KIT
 - Extended to model jobs and available resources at computing centers

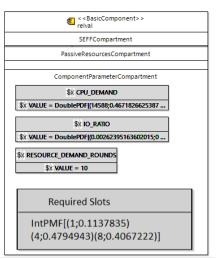

As a proof of concept simulate CMS workflows at the Tier 1 center GridKa

[1] The Palladio component model for model-driven performance prediction https://doi.org/10.1016/j.jss.2008.03.066

Palladio Simulator

- Performance predictions for design decisions
- Software architecture simulator
- Successfully applied for
 - Solving industrial problems
 - Optimizing cloud infrastructure (chemical computing)^[1]

Graphical Interface of the Palladio Eclipse Plugin


Abstract models: Express resource needs as statistical distributions

 [1] Rapid Testing of IaaS Resource Management Algorithms via Cloud Middleware Simulation https://arxiv.org/pdf/1801.09484.pdf

Model Computing Jobs

- Model each kind of computing job with its resource usage
 - CPU & I/O
 - Required job slots
 - Number of events
- Model high load on system
 - Closed workload
 - Enough jobs to guarantee that system never idles
 - Each job type has configurable share of load

Screenshot: Computing job component in Palladio

Model Resource Container

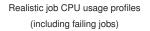
- Model each type of computing node
 - Number and processing speed of cores
 - I/O capabilities
 - Number of instances of node

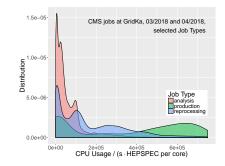
Model load balancing strategy

- First fit search based on available job slots
- Easily modifiable to evaluate new strategies

< <resourcecontainer>> Intel(R) Xeon(R) CPU E5-2665 0 @ 2.40GHz</resourcecontainer>		
-	CPU	
Scheduling: P Number of Re Processing Ra MTTR: 0.0 MTTF: 0.0		
\$	HDD	
Scheduling: P Number of Re Processing Ra MTTR: 0.0 MTTF: 0.0 Write Process Read Processi	ite: 1 ing Rate: 1	
Number	r of Replicas	
43		
Capa	acity	
16		

Screenshot: Resource container in Palladio


Simulating CMS Jobs at GridKa


Data Sources:

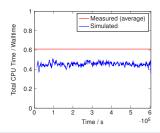
- Global job monitoring data
 - JobMonitoring, WMArchive job reports

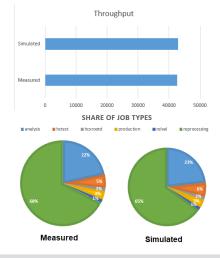
from Hadoop analytix cluster with CMSSpark framework (Kuznetsov)

- Currently extracting CMS jobs at GridKa
- Site-specific performance data
 - VO resource share
 - Node benchmarks

Model Calibration Process

Automated parameter extraction:


- 1. Match jobs and node performance information
- 2. Group computing jobs by type and requirements
- Extract resource demand distributions and load composition



Validation

- Simulation of CMS computing jobs at GridKa for one week
 - Ran in 18 minutes on a laptop
- Metrics
 - Throughput
 - Share of job types
 - CPU efficiency

Conclusion

- Computing resources for user analyses will become increasingly distributed and heterogeneous in the future
- Scheduling will be a key component for the efficient usage
- In cooperation with computer scientists at KIT use the tool Palladio to model and evaluate different scheduling strategies
- A proof of concept for the usage of Palladio was performed simulating CMS workflows at the Tier 1 center GridKa
 - Fully automated model creation based on data from CMS workflow monitoring and GridKa
 - We were able to successfully model the situation at GridKa for key metrics
 - Investigate modeling for further metrics

Outlook

- Extend the current model to be able to simulate heterogeneous and distributed computing resources
- Include modeling of challenges due to remote data access and caching mechanism
- Use the result of these models as an input for the design of future scheduling systems
- Optimize scheduling decisions using modeling results at run-time