The H2020 FET-HPC projects ExaNeSt and EuroExa are part of a larger initiative aiming to demonstrate the feasibility of a European technology based ExaScale HPC system in the next 5–8 years. The consortia are a balanced mix of academic and research excellence and SMEs well established at European level. INFN is mainly involved in network design, system integration and platform benchmarking through real scalable applications.

ExaNeSt (2015-2019) project main goals:
- Evaluation of Exascale-enabling technologies.
- Architecture hardware/software co-design of a novel system-level interconnect, distributed NVM (Non-Volatile Memory) storage and advanced cooling infrastructure for an ARM-based ExaFlops-class supercomputer benchmarked through a rich set of real scalable applications.
- Integration of a small scale (200 computing nodes) demonstrator based on last generation high end SoC FPGAs.

EuroExa (2017-2021) leverages ExaNeSt results to deliver a world-class HPC pre-Exascale demonstrator:
- Consortium: 16 partners (SME 40%).
- Duration: 42 months.
- Budget 20 M€.

Highlights of ExaNeSt hardware

QFDB Node

- Xilinx Zynq Ultrascale+ MPSoC
- Mezzanine & Cooling Mechanics

The Node: QFDB (Quad-FPGA Daughter-Board):
- x4 Ultrascale+ FPGAs (16 cores)
- 64 GB DDR4 (16 GB/FPGA @160Gbps)
- 512 GBytes SSD/NVMe
- All-to-all intra-node topology.
- 10 HSS 10 Gbps links to external world.
- 120mm x 130mm

Hierarchical Network: ExaNet
- PHY based on High-throughput High Speed Serial Links (HSS) with custom flow control & protocol.
- Tier-0: Intra-QFDB: 2x2+2 HSS links per FPGA with “all-to-all” (one hop) topology.
- Tier-1: Inter-QFDB: 10 bidirectional HSS links, 20 Gbps peak aggregated bandwidth, multiple configurable topologies.
- Tier-3: Inter-Chassis: ToR (Top of Rack) custom switch based on a Virtex Ultrascale+ FPGA.
- Tier-4: Photonics for inter-racks communications.

ExaNet Prototype first results:
- 4 Trenz systems, 2x2 mesh topology.
- 2 running ports: 1 for data (pck/2er), 1 for ACKs (mbox).
- Running at 156MHz.
- 10Gbps links.

System Architecture and Technology

Euroexa Computing Nodes:
- TB1/TB2 Node: QFDB (v2).
- TB3 Node: custom designed multi-core ARM SoC tightly integrated with FPGAs (network & accelerators).

Blade
- 16 Node half depth 1u chassis.
- 2x 3.2Kw per U (back2back).
- Hybrid (Switched + Direct) network topology.
- 2.56 Tbps aggregate switching performance.
- Total Liquid Cooling technology.
- Hot water out, chiller-less operation.

Contacts

Presenter: Alessandro Lonardo (alessandro.lonardo@roma1.infn.it)
ExaNeSt Coordinator: Manolis GH Katevenis (katevenis@ics.forth.gr)
EuroExA Coordinator: Georgios Gounias (goumas@cs/lab.ece.ntua.gr)

This work was carried out with support from:
- ExaNeSt project, funded by the European Union Horizon 2020 Research and Innovation Programme under Grant Agreement No. 671553;
- EuroExA project, funded by the European Union Horizon 2020 Research and Innovation Programme under Grant Agreement No. 754337;