Advancing throughput of HEP analysis work-flows using caching concepts

23rd International Conference on Computing in High Energy and Nuclear Physics | 2018-07-09

Christoph Heidecker, Max Fischer, Manuel Giffels, Eileen Kühn, Günter Quast, Martin Sauter, Matthias Schnepf
Computing challenge in HEP

- Heterogeneous infrastructure
 - Specialized centers providing Grid storage
Computing challenge in HEP

- Heterogeneous infrastructure
 - Specialized centers providing Grid storage
 - Diverse computing resources for analysis processing providing no dedicated storage

- Challenges
 - 24/7 operation of Grid storage elements is expensive
 → Concentrate on a few providers
 → Reduce data replication on long term storage
Computing challenge in HEP

- Heterogeneous infrastructure
 - Specialized centers providing Grid storage
 - Diverse computing resources for analysis processing providing no dedicated storage

- Challenges
 - 24/7 operation of Grid storage elements is expensive
 → Concentrate on a few providers
 → Reduce data replication on long term storage
 - Network interconnection is limited
 → inefficient processing of remote data
Computing challenge in HEP

- Heterogeneous infrastructure
 - Specialized centers providing Grid storage
 - Diverse computing resources for analysis processing providing no dedicated storage

- Challenges
 - 24/7 operation of Grid storage elements is expensive
 → Concentrate on a few providers
 → Reduce data replication on long term storage
 - Network interconnection is limited
 → inefficient processing of remote data
 - Future HEP experiments cause heavily increasing demand for storage and computing resources
 → Physics results will be limited by computing infrastructure
The data access challenge

- User analysis work-flows on computing resources of institute
 - Access data stored on remote Grid storage systems
 - Distribute work-flows to Tier 3, Cloud, and HPC resources for processing.
The data access challenge

- User analysis work-flows on computing resources of institute
 - Access data stored on remote Grid storage systems
 - Distribute work-flows to Tier 3, Cloud, and HPC resources for processing.

- Observed dependency between CPU efficiency and data throughput
 - Processing is limited by available bandwidth
 - Effect is independent of resource type

Data Throughput needs to be optimized!
Data flow optimization

- Our approach:
 - "Naive" caching won’t work on distributed computing resources → We need to prevent unnecessary replication of data
 - Caches need to communicate building a distributed data system
 - Cache content needs to influence the job scheduling → Reach data locality by bringing job to most suitable cache

Coordinated Distributed Caching
Data flow optimization

- Our approach:
 - “Naive” caching won’t work on distributed computing resources → We need to prevent unnecessary replication of data
 - Caches need to communicate building a distributed data system
 - Cache content needs to influence the job scheduling → Reach data locality by bringing job to most suitable cache

- Concept is suitable
 - For HEP workflows that process same datasets repeatedly
 - For optimization of distributed resources with no or permanent storage

- Challenge: *Transparent integration* into current infrastructure
 - Support HEP data transfer protocols
 - Automatically coordinate without user interaction
Integration of caching into HEP infrastructure

- Basic features are provided by
 - **HTCondor** that handles jobs to resource scheduling

![Diagram of HEP infrastructure](image-url)
Integration of caching into HEP infrastructure

- Basic features are provided by
 - **HTCondor** that handles jobs to resource scheduling
 - **XRootD** that already provides basic caching functionality
Integration of caching into HEP infrastructure

- Basic features are provided by
 - HTCondor that handles jobs to resource scheduling
 - XRootD that already provides basic caching functionality

- We developed a **Coordination Service** that
 - matches jobs to the most suitable resource/cache
 - influences data placement via job scheduling
Coordination service: NaviX

- New development based on long-time expertise

 Data Locality via Coordinated Caching for Distributed Processing, M Fischer et al. 2016 J. Phys.: Conf. Ser. 762 012011

- Extension of existing HTCondor and XRootD components
Coordination service: NaviX

- New development based on long-time expertise
 Data Locality via Coordinated Caching for Distributed Processing, M Fischer et al. 2016 J. Phys.: Conf. Ser.762 012011

- Extension of existing HTCondor and XRootD components

- Coordination service matches XRootD cache information to HTCondor job description

- Hooks reconfigure job description and thus influence HTCondor scheduling

- NaviX enables monitoring of data accesses, caches and jobs
Scalability of XRootD-HTCondor caching

- XRootD and HTCondor take care of hierarchical upscaling
Scalability of XRootD-HTCondor caching

- XRootD and HTCondor take care of hierarchical upscaling
- Job-to-Cache coordination can be performed at all levels with regard to the data location information of the subsystems.
Current status

- Prototype setup is in testing phase
- Deployment of caches on different types of resources
 - At institute resources with high-performant devices
 - At HPC centers and cloud resources

![Data throughput of jobs]

Prototype:
84 job slots, 4TB SSD cache (59TB parallel file system)
Current status

- Prototype setup is in testing phase
- Deployment of caches on different types of resources
 - At institute resources with high-performant devices
 - At HPC centers and cloud resources
- Production system with advanced coordination logic is scheduled

- Caches reach maximum read speed
- Simple coordination logic already improves data throughput
Conclusion

- The amount of data that HEP experiments can collect and process are limited by data throughput
- Efficiency is reduced by bandwidth of data transfers via network

Solution: *Coordinated Distributed Caching*
- Reduces load on network using localized caches
- Reaches data locality by scheduling the job to most suitable cache
- Data placement via job scheduling

- We developed *NaviX Coordination Service*
 - Extends commonly used HTCondor and XRootD setup
 - Integrates cache location information into job scheduling
 - Enables monitoring and fine-tuning of data accesses