

Advancing throughput of HEP analysis work-flows using caching concepts

23rd International Conference on Computing in High Energy and Nuclear Physics | 2018-07-09

Christoph Heidecker, Max Fischer, Manuel Giffels, Eileen Kühn, Günter Quast, Martin Sauter, Matthias Schnepf

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (ETP) - DEPARTMENT OF PHYSICS

- Heterogeneous infrastructure
 - Specialized centers providing Grid storage

- Heterogeneous infrastructure
 - Specialized centers providing Grid storage
 - Diverse computing resources for analysis processing providing no dedicated storage
- Challenges

2018-07-09

- 24/7 operation of Grid storage elements is expensive
 - → Concentrate on a few providers
 - → Reduce data replication on long term storage

- Heterogeneous infrastructure
 - Specialized centers providing Grid storage
 - Diverse computing resources for analysis processing providing no dedicated storage
- Challenges

2018-07-09

- 24/7 operation of Grid storage elements is expensive
 - → Concentrate on a few providers
 - → Reduce data replication on long term storage
- Network interconnection is limited
 - → inefficient processing of remote data

- Heterogeneous infrastructure
 - Specialized centers providing Grid storage
 - Diverse computing resources for analysis processing providing no dedicated storage
- Challenges
 - 24/7 operation of Grid storage elements is expensive
 - → Concentrate on a few providers
 - → Reduce data replication on long term storage
 - Network interconnection is limited
 - → inefficient processing of remote data
 - Future HEP experiments cause heavily increasing demand for storage and computing resources
 - \rightarrow Physics results will be limited by computing infrastructure

The data access challenge

- User analysis work-flows on computing resources of institute
 - Access data stored on remote Grid storage systems

Christoph Heidecker · CHEP 2018 Conference

Distribute work-flows to Tier 3, Cloud, and HPC resources for processing.

The data access challenge

- User analysis work-flows on computing resources of institute
 - Access data stored on remote Grid storage systems
 - Distribute work-flows to Tier 3, Cloud, and HPC resources for processing.

- Observed dependency between CPU efficiency and data throughput
 - Processing is limited by available bandwidth
 - Effect is independent of resource type

→ Data Throughput needs to be optimized!

Data flow optimization

Our approach:

Coordinated Distributed Caching

- "Naive" caching won't work on distributed computing resources
 - → We need to prevent unnecessary replication of data
- Caches need to communicate building a distributed data system
- Cache content needs to influence the job scheduling

Christoph Heidecker · CHEP 2018 Conference

→ Reach data locality by bringing job to most suitable cache

Data flow optimization

Our approach:

Coordinated Distributed Caching

- "Naive" caching won't work on distributed computing resources
 - → We need to prevent unnecessary replication of data
- Caches need to communicate building a distributed data system
- Cache content needs to influence the job scheduling
 - → Reach data locality by bringing job to most suitable cache
- Concept is suitable
 - For HEP workflows that process same datasets repeatedly
 - For optimization of distributed resources with no or permanent storage
- Challenge: Transparent integration into current infrastructure
 - Support HEP data transfer protocols
 - Automatically coordinate without user interaction

2018-07-09

Integration of caching into HEP infrastructure

- Basic features are provided by
 - HICONdor that handles jobs to resource scheduling

Integration of caching into HEP infrastructure

- Basic features are provided by
 - HICONdor that handles jobs to resource scheduling

Christoph Heidecker · CHEP 2018 Conference

XRootD that already provides basic caching functionality

Integration of caching into HEP infrastructure

- Basic features are provided by
 - HICONdor that handles jobs to resource scheduling
 - XRootD that already provides basic caching functionality

- We developed a Coordination Service that
 - matches jobs to the most suitable resource/cache
 - influences data placement via job scheduling

Coordination service: NaviX

 New development based on long-time expertise

Data Locality via Coordinated Caching for Distributed Processing, M Fischer et al. 2016 J. Phys.: Conf. Ser.762 012011

Christoph Heidecker · CHEP 2018 Conference

Extension of existing HTCondor and XRootD components

Coordination service: NaviX

 New development based on long-time expertise

Data Locality via Coordinated Caching for Distributed Processing, M Fischer et al. 2016 J. Phys.: Conf. Ser.762 012011

- Extension of existing HTCondor and XRootD components
- Coordination service matches XRootD cache information to HTCondor job description
- Hooks reconfigure job description and thus influence HTCondor scheduling
- NaviX enables monitoring of data accesses, caches and jobs

Christoph Heidecker · CHEP 2018 Conference

Scalability of XRootD-HTCondor caching

XRootD and HTCondor take care of hierarchical upscaling

Christoph Heidecker · CHEP 2018 Conference

Scalability of XRootD-HTCondor caching

XRootD and HTCondor take care of hierarchical upscaling

Christoph Heidecker · CHEP 2018 Conference

Job-to-Cache coordination can be performed at all levels with regard to the data location information of the subsystems.

Current status

- Prototype setup is in testing phase
- Deployment of caches on different types of resources
 - At institute resources with high-performant devices

Christoph Heidecker · CHEP 2018 Conference

At HPC centers and cloud resources

Current status

- Prototype setup is in testing phase
- Deployment of caches on different types of resources
 - At institute resources with high-performant devices
 - At HPC centers and cloud resources
- Production system with advanced coordination logic is scheduled

Caches reach maximum read speed

Christoph Heidecker · CHEP 2018 Conference

→ Simple coordination logic already improves data throughput

Conclusion

- The amount of data that HEP experiments can collect and process are limited by data throughput
- Efficiency is reduced by bandwidth of data transfers via network
- Solution: Coordinated Distributed Caching
 - Reduces load on network using localized caches
 - Reaches data locality by scheduling the job to most suitable cache
 - Data placement via job scheduling
- We developed NaviX Coordination Service
 - Extends commonly used HTCondor and XRootD setup
 - Integrates cache location information into job scheduling
 - Enables monitoring and fine-tuning of data accesses

Christoph Heidecker · CHEP 2018 Conference