
A Git-based Conditions Database backend
for LHCb

M. Clemencic on behalf of the LHCb Collaboration
July 10, 2018

CERN - LHCb

slides

1/17

https://indico.cern.ch/event/587955/contributions/2936870/


Introduction

• LHCb has been using COOL/SQLite based CondDB for 12 years
• We wanted to investigate alternative technologies for LHC Run 3
• A Git based implementation was developed and commissioned

M. Clemencic - Git CondDB for LHCb 2/17



Table of contents

1. The Conditions Database

2. Git CondDB Design and Implementation

3. Git CondDB in Production

M. Clemencic - Git CondDB for LHCb 3/17



The Conditions Database



Definitions

Condition:
Time-varying non-event data required for the correct
reconstruction of event data.

Conditions Database (CondDB):
A database for recording and retrieving conditions.

M. Clemencic - Git CondDB for LHCb 4/17



Conditions Database

• 3 dimensions of condition values
• source/id
• version
• time evolution (IOVs)

M. Clemencic - Git CondDB for LHCb 5/17



COOL

• CERN-IT developed Conditions Database library
• API matching our CondDB model
• optimized for standard access to conditions
• multiple backends (via CORAL)
• Python bindings (via ROOT)

M. Clemencic - Git CondDB for LHCb 6/17



LHCb Conditions Databases

• Same format for detector description and condition data
• currently XML files

• Small footprint
• full history in a few GBs
• deployed as files on CVMFS

• Storage is partitioned in different SQLite files by type of data
• detector description
(2 dimensions, no time evolution)

• alignment and calibrations
(all 3 dimensions)

• environment information
(2 dimensions, no versions)

M. Clemencic - Git CondDB for LHCb 7/17



Git CondDB Design and
Implementation



Choosing the Technology

• Old system had limits
• not ready for multi-threaded applications
• support of COOL/CORAL limited to bugfixes
• clumsy data management

• Main requirements
• file based
• filesystem-like hierarchy
• simple management of contributions

Among alternative backends, Git looked promising

M. Clemencic - Git CondDB for LHCb 8/17



Git

Git is a Distributed Version Control System with interesting features:

• filesystem structure with versions
• each clone contains all versions
• tags and branches
• built-in incremental synchronization
• data compression and deduplication

but

• no support for the 3rd dimension (IOVs)

M. Clemencic - Git CondDB for LHCb 9/17



The First 2 Dimensions

Git main goal is to track changes to a filesystem hierarchy.

The Detector Description partition of LHCb CondDB is just XML files,
with multiple revisions.

Porting the Detector Description data to a Git database is natural.

M. Clemencic - Git CondDB for LHCb 10/17



Adding the 3rd Dimension

Alignments and Calibrations are
recorded in LHCb CondDB as XML files
with an attached IOV.

Conditions time evolution must be
mapped to a simple filesystem layout.

One possibility:
use directories and metadata files

directory

data
with IOVs

data
w/o IOVs

data

data

IOVs

M. Clemencic - Git CondDB for LHCb 11/17



Adding the 3rd Dimension

Alignments and Calibrations are
recorded in LHCb CondDB as XML files
with an attached IOV.

Conditions time evolution must be
mapped to a simple filesystem layout.

One possibility:
use directories and metadata files

directory

data
with IOVs

data
w/o IOVs

data

data

IOVs

M. Clemencic - Git CondDB for LHCb 11/17



Adding the 3rd Dimension

Alignments and Calibrations are
recorded in LHCb CondDB as XML files
with an attached IOV.

Conditions time evolution must be
mapped to a simple filesystem layout.

One possibility:
use directories and metadata files

directory

data
with IOVs

data
w/o IOVs

data

data

IOVs

M. Clemencic - Git CondDB for LHCb 11/17



Accessing the Data

A condition payload is identified by:
• version (tag)
• string id (path)
• event time

Git API allow retrieval of payloads
by version and path.

Metadata files are simple mappings
from IOV to payload.

start
request

set current IOV
to max range

get object for
version and path

set current IOV
to found range

cut by previous IOV

is it a directory?
get path and IOV
for time point

from metadata file

return data +
current IOV

yes

no

directory

data
with IOVs

data
w/o IOVs

data

data

IOVs

M. Clemencic - Git CondDB for LHCb 12/17



LHCb CondDB Ecosystem Changes

Not just the CondDB backend

• data management
• custom tools for CondDB I/O→ text editors

• contributions management
• JIRA + custom tools→ Gitlab + merge requests

• database files deployment
• custom web based sync tools→ Git native sync protcol

M. Clemencic - Git CondDB for LHCb 13/17



Git CondDB in Production



Commissioning

2016 2017 2018
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Development

Release

Commissioning

Production

Backport to
Old Software

Decommission
Old Backend

today

From conception to production in less than one year!

M. Clemencic - Git CondDB for LHCb 14/17



Performance: Time

Time to load all objects for a given version and event time:

Backend Total Time
COOL/SQLite 8.1 s

Git 3.5 s

• Host
• Intel(R) Core(TM) i7-7560U CPU @ 2.40GHz
• Data from CVMFS with SSD local disk

• ∼ 13000 queries to CondDB
• XML parsing + objects creation→ ∼ 20 s

M. Clemencic - Git CondDB for LHCb 15/17



Performance: Size

Space on Disk (as of May 2017) in MB

SQLite Git bare
Det. Desc. 34 3
Align. + Calib. 730 285
Environment 2300 357
Simulation 25 9

average ∼ 5× reduction

(Git CondDB includes LHCb Upgrade Detector Description)

M. Clemencic - Git CondDB for LHCb 16/17



Summary



Summary

• Other technologies are available
• see HSF CWP on Conditions Data

• Git fits our main requirements and more
• faster, smaller, large community support, tools, …

• Current implementation very simple
• not much time spent in optimization (e.g. IOV lookup)

• Git CondDB has been used in production since 2017 data taking
• although intended as R&D for Run 3

• Changes are planned for Run 3
• investigating DD4hep Detector Description framework (poster #111)
• new data format for Detector Description and Conditions
• but we are planning to keep Git as backend

M. Clemencic - Git CondDB for LHCb 17/17

https://docs.google.com/document/d/1yTcw51TOc68DCZQ4AO7o1hBdkPbN5l52ysJgJXNnJl8/edit
https://indico.cern.ch/event/587955/contributions/2937633/


Back Up Slides



Why a Recursive Algorithm?

Why use recursion instead of simple branching?

1. call to object retrieval Git API in only one place
2. allow partitioning of metadata files for faster lookup

O(log n) instead of O(n)

M. Clemencic - Git CondDB for LHCb



Infrastructure: COOL

PVSS

Alignment
and

Calibration

ORACLE ORACLE

SQLite

CondDBServer

JIRA

Web Server

CVMFS HLT

Grid Jobs

COOL GlodenGate

Custom Tool

Developers

M. Clemencic - Git CondDB for LHCb



Infrastructure: Git

PVSS

Alignment
and

Calibration

GitLab

CondDBServer

CVMFS HLT

Grid Jobs

Git

Custom Tool

Developers
Merge Request

M. Clemencic - Git CondDB for LHCb


	The Conditions Database
	Git CondDB Design and Implementation
	Git CondDB in Production

