

23rd international conference on computing in high energy and nuclear physics

Disk Failures in the EOS Setup at CERN

A first systematic look at one year of collected data.

Alfonso Juan Portabales Gonzalez, <u>Dirk Duellmann</u> CERN, Storage Group

Motivation

- All LHC experiments are preparing for run periods with significant increase in data volume and rate
 - storage and media cost an important planning input
 - CERN deploys almost 100k disk devices
 - data access failures and service recovery after media failures require human effort from users and sites
- Can we predict and prevent data access problems?
 - identify less reliable hw types or deployment modes
 - proactively relocate data to reduce human effort
- Can we collect and **share failure information for HEP workloads?**
- among sites, users and storage hw and sw developers Disk Failures in EOS - A. Portabales & D. Duellmann - CHEP 2018, Sofia, Bulgaria

SMART Disk Metrics -

Self-Monitoring Analysis and Reporting Technology

- SMART metrics tend to be vendor/model dependent:
 - Initial studies did not reach clear or widely applicable conclusions
 - Reasonably sized data set is required to use more sophisticated statistical or ML methods
- Recent studies of SMART based failure models for hard drives
 - Backblaze: collects and publishes drive data since 2013(!)
 - MSST 2017: Annualised Failure Rate around ~3.33%
 - 77% of failed drives show smart attributes, IBM ML model
 - Google: 60 days after the first uncorrectable error on a drive (Smart[198]) a drive is 39 times more likely to fail
 - but 36% of failed drives showed no smart error at all

Challenges: Data Availability & Quality

- This study was not a designed measurement!
 - (previous) Fabric disk sensor: collected only smart summary (1-bit)
 - EOS operations: smart metrics with ~daily collection
 - Disk model information: scraped periodically "by-hand"
 - EOS scrubbing: analysis of checksum failures has started, but is not yet included here
- Different data sources, and different data structures
 - For smaller sites this may more complicated (due to smaller statistics)
 or more easy due to fewer data sources involved
- Data that is not actively analysed is usually wrong or not existing!
 - Metrics for daily operation \neq metrics for analytics

Input Dataset: Some Overall Statistics

- Days with smart measurements: 551
 - oldest measurement included: 620 days ago
- Number of EOS disks measured per day:
 - between 635 and 40563
 - average per day: 31770
- Total number of unique disks: 45874
- Complete vendor device information for 35% of all measurements.
- Deployment of a new fabric disk probe is imminent
 - will provide more complete drive meta data and smart info for all production drives at CERN

Metric Collection: Measurements per Day

Number of Days Measured per Disk

Per Disk: Days in Operation

How to Define Drive Failure?

- A disk is considered as "suspect" of failure
 - when it disappeared from the daily smart data collection
 - while the other disks in the machine continue to report
- This basic label divides our population into two groups
 - Suspects and Non Suspects
- We checked this rule against other possible causes
 - eg disk exchange within the centre, correlated outages etc.
 - we can trace disks through the centre via their unique serial
- Note: ~68% of all disks have been substituted or stopped being recorded
 - Also the replacement data is useful to review the hardware flow through the data center

Overall Results

- Annualised Failure Rate: 0.89%
 +/- 0.05% (stat.)
- Average disk age: 1095 days
- EOS at CERN: MTBF
 - 1 failure every 1.6 days

 Relative vendor contributions names replaced by CH cantons

Results by "Vendor"

	Vendor	Failure Rate [%/yr]	MD complete [%]	Average Age [days]	SD Age [days]
	Vaud	1.84	17	2214	245
	Luzern	0.00	1	1149	169
	Aargau	0.32	14	1717	277
	Geneva	0.40	2	412	157
	Ticino	2.39	1	722	51
	Bern	0.25	17	1481	256
	Zürich	1.45	44	1888	330
D	St.Gallen	4.52	6	1424	633

Kaplan-Meier Survival Curves

- Analysis is based on Kaplan-Meier survival curves
 - used eg on clinical trials in medicine
 - easy to calculate eg via R package **survival**, or python **lifelines**

$$\widehat{S}(t) = \prod_{i: \ t_i \leq t} \left(1 - rac{d_i}{n_i}
ight)$$

- Initially producing survival rate per vendor:
 - increased statistics will allow model based analysis
- We consider two survival curves:
 - one based on single drive failure
 - one based on drive set substitution

Survival Curves: Disk Replacements by Vendor

Survival Curves: Failed Disks per Vendor

Are Failures correlated with Temperature?

SMART Metric Variation

Are the Metrics Correlated?

Non Suspects

Suspects

Conclusions and Next Steps

- With current statistics and under CERN conditions and workload, we
 - measured overall annualised failure rate (AFR) as 0.89%+/-0.05%
 - no visible correlation between disk temperature
 - no increased failure rate for young disks (burn-in period sufficient)
 - identified relevant SMART metrics as input for a failure prediction
- With more than tripled statistics expected from new fabric disk probe
 - train a RNN for failure prediction model
 - review failures by model and by age with full CERN population
 - quantify impact of media faults wrt. other sources of unavailability

Thanks for your attention! Questions?