
EventDB: an event indexer and caching
system for BESIII experiment

Yaodong CHENG
On behalf of Scientific data management Project

CC-IHEP, CAS
chyd@ihep.ac.cn

2018-7-10

2

Contents

Motivation

 System architecture

 Design and implementation

 Performance Test and results

 Conclusion

3

Motivation

We have found from FS log that stride-read is the
main IO pattern during physics analysis

 Several problems with the traditional file-level
data management
 Read too much more data than needed in case of full file

scanning
 File-based cache efficiency is low
 File-based transmission overhead is high

 Goal: allow fast and efficient selection of
events of interest, based on various criteria, and
provide references that point to those events in
millions of files

One example of stride-read

4

Related work: BESIII experiment
Data reconstruction job: Recon. Algs

file1.dstfile1.raw

file1.dst, …

Physics analysis job: RhopiAlg

ntuple

file1.dst

data skim job

file1_skim.dst

file1_skim.dst, …

Physics analysis job: RhopiAlg

ntuple

(1)

Or (2)

Analyzing all of
reconstruction files

Analyzing skimmed files

Faster, but occupies more
storage space

Current
data
processing

5

Related work: BESIII experiment

Tag based
analysis

event 0 MdcTrac
kCol

TofTrack
Col

……

event 1 …… …… ……

event 2 …… …… ……

…… …… …… ……

event N …… …… ……

event 0 entry runId eventId Total_ch
arged

event 1 ... … … …

event 2 … … … …

…… … … … …

event N … … … …

Reconstruction File

Input for analysis

1) Users use TAG file as job input and set tag selection criteria (“B>=2 && C=1……”)
2) Read each entry in TAG file to choose events satisfied the criteria and read them from
DST (reconstruction) files

TagWriterAlg

Size of TAG file is ~1/700 of DST file

Production job

This work was done by Dr. Ziyan Deng etc

Tag File

6

Related work: BESIII experiment

User interface
 One TAG file for each reconst. file, can be produced during or after reconstruction
 Physics groups or individual users can define the tag files
 Specify only tag files in analysis job

Performance
 Size of TAG file is ~1/700 of DST file, depending on what saved in TAG
 CPU time of tag based analysis is similar with directly analyzing skimmed DST

files, much less than analyzing full DST files.

 Reduced the disk consumption by skimmed data
✘Have to scan all of TAG files for specified selection criteria

EventDB

7

System architecture

 EventIndexer
 Event Index Database

 EventAccess
 Event-oriented Data Transfer System
 Event-oriented Caching System

 EventExtractor
 Event Tag Extractor
 Scan all of DST files and extract

event attributes into DB

High Energy Physics Offline Software System
(BESIII, HXMT, …)

High Energy Physics Data Storage System
(Lustre, GPFS, EOS…)

EventDB Management System

Data Flow
Control Flow

Event-oriented
Caching System

Event Index Database

Event-oriented Data
Transfer System

Event Tag Extractor

8

EventIndexer

 Event-level metadata system intended to discover and select
events of interest to an analysis

 Store event TAGs and its location in files (filename+EventOffset)
 Export index file after selection

FileDB
(LFC, …)

EventDB
(hbase)

Distributed file
system

Files:
RAW,

ESD/DST,

AOD,

Site A

Files
RAW,

ESD/DST,
AOD …

Site B

1. The basic attribute of the event: RunID,
FileID, EventID, VersionID (TAG)

2. The tag is defined by different physics
analysis group

9

EventIndexer Data Storing

Part of the data in hbase

Part of the clustered data

NoSQL database：HBase
Rowkey: runNo#PropertyName#Value
Value: Filename-Eventoffset,……

 How to store tag in eventIndexer

10

Attributes extracted for BESIII

 BeamEnergy, beam energy: double
 Ntracks, total number of tracks in the

event: int
 Nshowers, total number of showers in

the event: int
 BeamVx, x-position of the beam spot:

double
 BeamVy, y-position of the beam spot:

double
 BeamVz, z-position of the beam spot:

double
 number of gamma: int
 number of K+: int
 number of K-: int

 number of Ks: int
 number of pi+: int
 number of pi-: int
 number of pi0: int
 number of Lambda: int
 number of ALambda: int
 number of e+: int
 number of e-: int
 number of mu+: int
 number of mu-: int
 number of p+: int
 number of p-: int
 number of eta: int

11

EventDB-based analysis

Eventdb
Json file

File1.json, File2.json …

Physics analysis job: RhopiAlg

ntuple

Use query interface to get the json index fileEventDB based analysis:
1) User get json index file through EventDB by

specifying some criteria

2) Users use json file as job input and set tag
selection criteria (“B>=2 && C=1……”)

3) Read each entry in json file to choose events
satisfied the criteria and read them from DST
(reconstruction) files

12

Storage Of the Index System

There were nearly 100 million BESIII events with an original data size of 2.2TB in
testing system. After compression, the index contains less than 10 million lines of
records, the size is 55GB.

Index number and space Search time
1/1000

1/400

13

Event Cache
 Record the file access patterns during the physics experiment analysis to

analyze the hot event data
 Keep the high access frequency events into HBase located in the memory or

SSD, to improve event accessing performance

Rowkey columns

Fname-EntryID TBossFullEvent Length

DB: Hbase
Rowkey: FileName+EntryID
Value: String of Serialized TTree of one event

14

Event Cache Interfaces

The Interface：
HTree(const string& table, const string &family); //HTree data structure imitates TTree interface providing
data access services, parameters are hbase table name and column cluster name.
init(const char *server, const char *port); //Initinalize thrift connection service, parameters are the ip and
port of thrift service.
tree->setBranchAddress("TEvtRecObject", evtTecObj);
getEntry(const string&rowKey);
void allEventcopy(char *filename,char* startID,char* num); //import the events into hbase.
Data conversion:

DST FILE
DST FILE
ACCESS
SERVICE

ROOT
OBJECT

RootCnvSvc DataObject
OBJECT

HBase
HBase DATA
ACCESS
SERVICE

BINARY
STREAMING

Transferd TransferCnvSvc

15

Event Transfer Workflow

 1) Analysis software running on remote site tells which events will be used in an
analysis, usually giving a json index file

 2) Transfer server parses the index file and then process it in parallel
 3) Transfer server firstly get event location (file and offset) from EventIndexer,

then retrieve event data from DST file using ROOT framework
 4) Transfer server serializes event data and transfer it to transfer client
 5) Transfer client deserializes event data, give it to analysis software

Internet

Transfer
Server

Transfer
Client

http/http2

multi-stream, chunk, parallel

Public IP

Firewall
analysis
software

idx.json

EventIndexer

DST
File

Firewall

16

Data analysis performance testing

Case site EventIndexer Event
Cache

1: Original analysis local No No

2: Original analysis +
EventDB

local Yes No

3: Original analysis +
EventCache + EventDB

local Yes Yes

4: Original analysis +
Remote + EventDB

remote Yes Yes

13.2

9.3

2.16

11.68

0

2

4

6

8

10

12

14

Ti
m

e
(m

in
)

1 2 3 4

• Select 11237 from 99130 events
• Network bandwidth: 1000Mbps

17

Conclusion

 Event-oriented data management will solve some problems of the
file-based data management system

 Use NoSQL database to store the index and data of the event could
be more efficiency and easy accessing

 Event-level transfer only transmits data interested, and we will add
some new functions, eg HTTP2 support, etc

 Under development and try to use it in production
 Thanks for the related work and help provided by Beijiang Liu,

Ziyan Deng, and members from scientific management project

18

Thank you!

	EventDB: an event indexer and caching system for BESIII experiment
	Contents
	Motivation
	Related work: BESIII experiment
	Related work: BESIII experiment
	Related work: BESIII experiment�
	System architecture
	EventIndexer
	EventIndexer Data Storing
	Attributes extracted for BESIII
	EventDB-based analysis
	Storage Of the Index System
	Event Cache
	Event Cache Interfaces
	Event Transfer Workflow
	Data analysis performance testing
	Conclusion
	幻灯片编号 18

