
Distributed Data Collection for the Next
Generation ATLAS EventIndex project

Álvaro Fernández Casaní, Dario Barberis, Javier Sánchez,
Carlos García Montoro, Santiago González de la Hoz, Jose

Salt Cairols

on behalf of the ATLAS Collaboration

Instituto de Física Corpuscular (IFIC)

 CSIC - Universitat de València

Distributed Data Collection for the Next Generation ATLAS EventIndex Project 2CHEP2018

Outline

1)ATLAS EventIndex project

- Objective and use cases

2)Distributed Production and Data Collection Architecture

3)Performance and results

4)Evolution guidelines for Next Generation EventIndex

- Testing Kudu as a new Backend Storage.

5)Summary

Distributed Data Collection for the Next Generation ATLAS EventIndex Project 3CHEP2018

1. ATLAS EventIndex: an event catalog

● A catalog of data (all events in all processing stages) is needed to meet
multiple use cases and search criteria. A small quantity of data per event is
indexed.

Events stored in files (identified by GUID)
Files are grouped into DATASETS
Wanted Event Index information ~= 300bytes to
1Kbyte per event:

•Event identifiers (run / event numbers, trigger stream,
luminosity block)

•Online trigger pattern (l1, l2, ef)
•References (pointers) to the events at each processing step
(RAW, ESD, AOD, DAOD) in all permanent files on storage

Event InfoEvent Info

RAWrefRAWref

ESDrefESDref
…

● We are indexing Billions of Events, stored in Millions of files
replicated at CERN and hundreds of grid-sites worldwide,
adding 100 Petabytes of data→ A complex big data distributed
system.

Distributed Data Collection for the Next Generation ATLAS EventIndex Project 4CHEP2018

 Use Cases

1) Event picking: users able to select single events depending
on constraints. Order of hundreds of concurrent users, with
requests ranging from 1 event (common case) to 30k events
(occasional).

2) Production consistency checks

● Duplicate event checkings: events with same Id appearing
in same or different files/datasets.

● Overlap detection in derivation framework: construct the
overlap matrix identifying common events across the
different files.

3) Trigger checks and event skimming: Count or give an event
list based on trigger selection.

● Trigger Overlap detection: number of events in a real data
Run/Stream satisfying trigger X which also satisfies trigger Y. Requirement: Storing and accessing

thousands of files and millions of
events in reasonable time.

Distributed Data Collection for the Next Generation ATLAS EventIndex Project 5CHEP2018

2. EventIndex Architecture

Data Production task to ensure all event index grid production performs correctly.

Data Collection task: a distributed producer/consumer architecture to collect all indexed
data and ingest it to the Data Storage services.

Data Production Data Collection Data Storage and Query Interfaces

Distributed Data Collection for the Next Generation ATLAS EventIndex Project 6CHEP2018

Data collection

EventIndex
Producer

1

AOD

Object
Store EventIndex

Consumer

2

4
6

5EI DataEI Data

EI Cons. Status

EI Prod. Status

EventIndex
Supervisor

STOMP
broker

3

7

SQLITE

2015 - mid 2017: Pure Messaging Based architecture (ActiveMQ brokers / Stomp protocol). Json data
encoding. (production peaks showed bottlenecks on messaging brokers)
mid 2017 onwards: ObjectStore (CEPH / S3 interface) as intermediary storage. Google protobuf data
encoding (compressed)

2018 Data Collection Architecture

Producer: Athena Python transformation, running at Tier-0 and grid-sites. Indexes AOD data and produces
an eventindex file, stored in ObjectStore
Supervisor: Controls all the process, receives processing information and validates data by dataset. Signals
valid unique data for ingestion to Consumers. Operated with a web interface
Consumers: Retrieves ObjectStore data, groups by dataset and ingest it into HDFS (Hadoop distributed
Filesystem)

Distributed Data Collection for the Next Generation ATLAS EventIndex Project 7CHEP2018

3. Performance: Event processing rates
TIER0 @ CERN GRID

EventIndex data production:
Tier0 @ CERN : ~60 M events/day
Grid Sites: ~280 M events/day

Total (Tier0 + Grid)
Peaks of 3500 M events indexed per day
105 Billion events indexed during last year (350 days) with ObjectStore approach

60 M

280 M

June’17 June’17June’18 June’18

Distributed Data Collection for the Next Generation ATLAS EventIndex Project 8CHEP2018

Object Store rates

Object creation rates:
- Mean of 5600 objects created/day with peaks of 44K objects.
- A total of 2M objects residing on CERN Ceph Object Store.
Size creation rates:
- Mean of 15 GiB stored/day, with peaks of 100GiB.
- A total of ~5 TiB stored on CERN Ceph Object Store.
Objects Size:
- Mean object size: 2.6 MiB (99% of objects are less that 15 MiB)
- Some bigger object, biggest one is 670 MiB
- Factor 10 compressed with respect to original eventindex data.

Object creation rates Size creation rates

5K 15G

June’17 June’17June’18 June’18

Distributed Data Collection for the Next Generation ATLAS EventIndex Project 9CHEP2018

Data Ingestion to Hadoop HDFS
Single Consumer rates

● Consumers retrieve the eventindex files from
ObjectStore and write it in HDFS Hadoop
● Granularity at the dataset(tid) level

● 40% contained in a single object.
● Most of the datasets < 75 MiB
● Biggest one: 8000 objects (~7GiB)

● Single Consumer event throughput performance
improved from 1K events/s (Messaging only), to
15K events/s (ObjectStore).

● Overcoming messaging brokers bottleneck, we
can also now scale horizontally.

● Stored in a single HDFS file per dataset (tid) in
a directory named after the container. Reduced
the number of HDFS files compared with
previous approach with a HDFS file per indexed
GUID.

● Current (all years) EventIndex Data in Hadoop:
● 37 TiB of indexed events data (167 TiB before

compression): 31 TiB real data, 6 TiB
MonteCarlo simulated data

Hadoop (HDFS)

Distributed Data Collection for the Next Generation ATLAS EventIndex Project 10CHEP2018

4. Evolution guidelines for Next
Generation EventIndex

● An evolution of the EventIndex concepts

– Currently: the same event across each processing step (RAW, ESD, AOD, DAOD, NTUP) is
physically stored at different HADOOP HDFS files.

– Future: One and only one logical record per event (Event Identification, Inmutable information (trigger,
lumiblock, …), and for each processing step:

● Link to algorithm (processing task configuration)
● Pointer(s) to output(s)
● Flags for offline selections (derivations)

● Support Virtual Datasets:

– A logical collection of events

● Created either explicitly (giving a collection of Event Ids) of implicitly (selection based on some
other collection or event attributes)

● Labelling individual events by a process or a user with attributes (key:value)

● Evolve EventIndex technologies to future demanding rates:

– Currently: ALL ATLAS processes: ~30billion events/day (up to 350Hz on average) → update rate
throughout the whole system (all years, real and simulated data). Read 8 M files/day and produce 3 M
files

– Future: due to expected trigger rates, need to scale for next ATLAS runs: at least half an order of
magnitude for Run3 (2021-2023): 35 B new real events/year and 100 B new MC event/year. For run4:
100 B new real events and 300 B new MC events per year. Then sum up replicas and reprocessing

Distributed Data Collection for the Next Generation ATLAS EventIndex Project 11CHEP2018

Exploring new backend storage solutions

Optimization and unification of data storage for
the EventIndex
Apache Kudu: new columnar-based storage that

allows fast insertions and retrieval.
- Tables with defined schema, primary keys and

partitions. No foreign keys
- Ingestion and query scanning are distributed

among the servers holding the partitions
(tablets)

- Partition pruning and projection/predicate
pushdown

Benefits for EventIndex:
- Unify data for all use cases (random access +

analytics)
- Related data (reprocessings) sit close to each

other on disc. Reduce redundancies and
improve navigation.

– See poster in this conference for more information: “A PROTOTYPE FOR THE
EVOLUTION OF ATLAS EVENTINDEX BASED ON APACHE KUDU STORAGE”

Distributed Data Collection for the Next Generation ATLAS EventIndex Project 12CHEP2018

Kudu events table schema

KEY columns

<epoch, project, streamname, prodstep,
datatype, version, runnumber,
eventnumber>

● Event uniqueness is forced among all tids and files
● Key keeps events that belong to same dataset close
● Scans for events in the same dataset are concentrated
● Horizontal Partitions by HASH(eventnumber) and RANGE(epoch)

on Key columns.

Trigger columns -binary-

L1: 24 columns x int64 = 1536 bits
8x(before prescaler), 8x(after
prescaler), 8x(after veto)
HLT: 192 columns x int64 = 12288 bits
64x(physics), 64x(Passthrough), 64x
Resurrected

● To allow selection on individual triggers
● Directly mapped to IMPALA bitwise operations (limited to 64bit

operands)
● Projection and predicate: push-down omitting unnecessary fields

from table scan.

Trigger columns -text-

L1mask: string (JSON)
EFmask: string (JSON)

● JSON encoded trigger bits to allow versatile operations. Less
columns that binary approach, but without the possibility of bitwise
IMPALA operations.

Event location

db, oid1, oid2 ● GUID of the file where to find this event, and object id inside that file

provenance ● JSON. Where to find this event in previous processing versions

Event info

Lumiblockn,bunchid,eventtime,
eventtimens, lvl1id, hltpsk, l1psk

● Event info specific data. Information shared by dataset would go in
another table.

Distributed Data Collection for the Next Generation ATLAS EventIndex Project 13CHEP2018

Kudu Test setup

● Current setup at IFIC

– Kudu 1.7 + Impala 2.11 +Spark 1.6 (cdh5.14.2)

● 5 machines with:

– 2x Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz (14 cores/CPU)

– 16x 16 GB RAM DDR4 @ 2400 MHz (256 GB)

– 8x data disks SATA SEAGATE ST6000NM0034 (6TB)

– 1x os disk SSD SAMSUNG MZ7KM240 (240GB)

– 1x Intel SSD DC P3700 (1.5 TB) pci nvme

– 2x 10Gpbs ethernet controller

● Current configuration:

– 1 master, 4 tablet servers

– 1 big data disk (RAID10) to store tablets (22TB per machine)

– WAL on Intel SSD

Distributed Data Collection for the Next Generation ATLAS EventIndex Project 14CHEP2018

Trigger encoding test

● Data in KUDU
– L1: 8x(before prescaler), 8x(after prescaler), 8x(after veto) 24 columns x int64 = 1536 bits

– HLT: 64x(physics), 64x(Passthrough), 64x Resurrected 192 columns x int64 = 12288 bits

– L1mask: string (JSON)

– EFmask: string (JSON)

Columns total size in Bytes/event

trig BIT_SHUFFLE
LZ4
0 as null

PLAIN_ENCODING
LZ4
0 as null

PLAIN_ENCODING
LZ4
0 as 0

L1 59.96 65.17 69.28

HLT 14.97 26.96 45.16

mask DICT
NO_COMPRESSION

PLAIN_ENCODING
LZ4

PLAIN_ENCODING
LZ4

L1Mask 697.55 150.93 150.93

EFMask 680.86 45.47 45.47

Distributed Data Collection for the Next Generation ATLAS EventIndex Project 15CHEP2018

Kudu ingestion test results

● Input data: datasets from May 2018 (mainly tier0)
● Tested different tables/configuration:

Base-t1: HASH(eventnumber)=8 RANGE(runnumber)
-all May’18 ds in same range(runnumber)
Base-t2: same as Base-t1 with key ending
<…,runnumber, eventnumber>
Epoch: HASH(eventnumber)=4 RANGE(epoch)=4
Epoch-t2: HASH(eventnumber)=8 RANGE(epoch)=4

Ingestion mean rate: ~5K events/s

● 1 consumer per table performance

Consumer Ingestion Stages:
Wait: for data valid (1%)
Parse: data conversion (4%)
Insert: into Kudu client buffers (23%)
Flush: buffers to Kudu (72%)

Distributed Data Collection for the Next Generation ATLAS EventIndex Project 16CHEP2018

Summary

● EventIndex Distributed Data Collection is running in production indexing and
collecting billions of events worldwide. During last year we have indexed 300
M events per day.

● Object Store based improved previous messaging-only approach:
– Producer payload encoded in a single object.

– More compact binary data encoding using protocol buffers. Compression reduces a factor
10 the data.

– Supervisor selects unique validated data, without consuming duplicate data into HDFS.

– Consumer improved performance. No blockings detected, we can scale horizontally
adding new instances when needed.

● Future challenges regarding new production rates, and EventIndex use cases
evolution:
– Current work on new Storage Technologies to support faster insertion, and random

access (low latency) and analytics use cases unification.

– First Ingestion tests on Kudu shows a promising backend for the EventIndex project.

– See poster in this conference for more information: “A PROTOTYPE FOR THE
EVOLUTION OF ATLAS EVENTINDEX BASED ON APACHE KUDU STORAGE”

