
Optimising XRootD Access to Erasure Coded
Object Stores

Gateways on WN
All jobs that run on the RAL batch farm are in
containers. Jobs use the same alias to access Echo,
however an entry in the ‘/etc/hosts’ file directs
transfers to this cache. On every WN there are also
containers running an XRootD gateway and proxy
cache.

If the file is not cached, the proxy asks the gateway to
retrieve the file from Ceph. These two daemons
authenticate between each other via a Simple Shared
Secret.

Strict cgroups are enabled on the XrootD containers
to prevent resource contention with running jobs.

Erasure Coding in Ceph
Object stores and those using erasure coding in
particular are designed to efficiently serve entire
objects (which are normally a few MB in size).

When a file is written to Echo it is broken into objects
up to 64MB in size. They objects are slit into 8 x 8MB
chunks and an additional 3 parity chunks are
calculated.

The 11 chunks are stored on different disk servers
which provides excellent data resilience but means an
entire 64MB object needs reassembling if a single
byte is requested. Some VO jobs using XRootD direct
I/O to access their data ran very inefficiently.

Echo
Since the start of 2017, the RAL Tier-1’s Echo object
store has been providing disk storage to the LHC
experiments. Echo provides access via both the
GridFTP and XRootD protocols. GridFTP is primarily
used for WAN transfers between sites while XRootD is
used for data analysis.

Access to Echo happens via gateways. Echo has a
small number of dedicated gateway machines that
provide external connectivity. Jobs running on the RAL
batch farm can access Echo through an XRootD
gateway running inside a container on every worker
node.

CMS AAA
For CMS, a dedicated XCache service has been
provided to allow remote jobs to access data directly
from Echo. This is has been built from two old disk
servers acting as disk proxy caches and a VM to act as
the manager.

A separate service was required because:
1) There is significant CMS specific configuration to

enable it to join their AAA service.
2) There are very few tools available to throttle the

throughput and protect the service from being
overloaded.

These caches pull entire files from Echo.

Performance
Two tests were run.
1) To simulate jobs that copy the data completely to

the local WN scratch disk 4 GB files were
repeatedly copied.

2) CMS jobs from their ‘PhaseIIFall16GS82’
reprocessing workflow, which is know to depend
heavily on I/O, were run.

Both disk and memory caches were tested. A variety
of ‘Max2Cache’ and ‘Pagesize’ parameters were
tested for the memory cache but had little affect.

Conclusions
Without caching jobs using XRootD direct I/O could
run 3 times slower than expected. The addition of
caches to every WN has fixed this problem and
demonstrates that Object Stores can be work
effectively for LHC workflows. Disk caches were
more performant than memory caches and used less
memory, which is a precious resource on WNs.

Acknowledgements
The authors would like to thank, Andy Hanushevsky,
Wei Yang and Brian Bockelman for all the helpful
advice and code updates they provided.

Andrew Lahiff, Alastair Dewhurst

Proxy Cache

XRootD
Manager

Regional
Redirector

Time/s No
Cache

Disk
(miss)

Disk
(hit)

Mem
(miss)

Mem
(hit)

xrdcp 16.9 32.7 13.0 65.4 45.4

CMS job 536 148 138 187 N/A

External Gateway
(XRootD,

GridFTP, S3)

WN

XRootD

WN

XRootD

WN

XRootD

WN

XRootD

WN

XRootD

WN

XRootD

Ceph Backend

Proxy Cache

