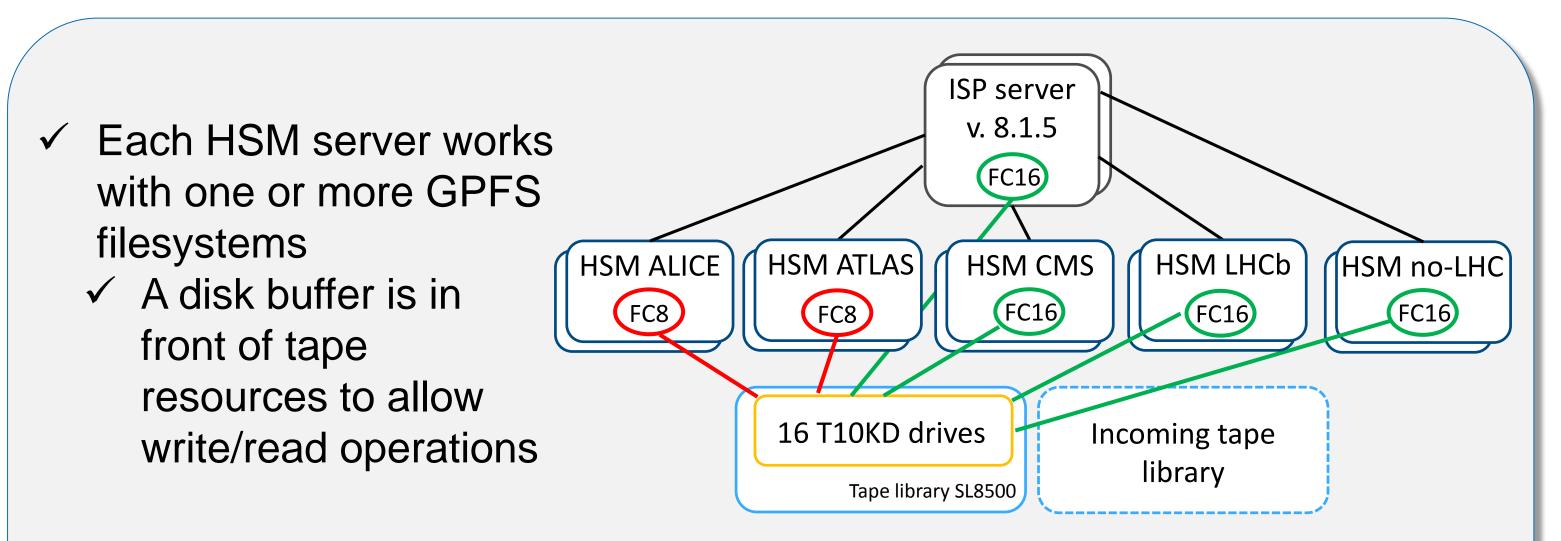
# HSM and backup services at INFN-CNAF

# **Tape facility at INFN CNAF**

**INFN CNAF** provides storage resources for 4 LHC experiments (Alice, Atlas, CMS, LHCb) and ~30 non-LHC collaborations


 $\checkmark$  ~ 30 PB on disk

 $\checkmark$  ~ 47 PB on tape (85 PB of total space)

Tape infrastructure components

- ✓ 1 tape library Oracle-StorageTek SL8500 (10000 slots)
- ✓ **16 tape drive T10KD** for scientific data
- ✓ 9 tape drive T10KC for backup/archive
- ✓ **GEMSS** (Grid Enabled Mass Storage System) software developed by INFN that provides a full HSM (Hierarchical Storage Management) integration of:

### **HSM** infrastructure



Migrations/recalls managed by GEMSS

- ✓ **StoRM** (Storage Resource Manager): software released by INFN based on SRM (Storage Resource Management) interface to access storage resources
- ✓ **IBM Spectrum Scale (GPFS):** the disk storage software infrastructure
- ✓ **ISP (IBM Spectrum Protect TSM)** software: the tape system manager
- HSM I/O rate

#### ✓ Writing

- $\checkmark$  Each tape server capable of hitting the theoretical limit of 1.6GB/s (or 800MB/s) defined by the FC connection, simultaneously for inbound and out-bound traffic
- $\checkmark$  The real rate depends on the number of drives in use (250MB/s) native rate per tape drive)

✓ Reading

- Lower rate due to non-sequential reading from tape  $\checkmark$
- ✓ Capacity and demand for transfer rate to tapes will be

**CNAF** resources trend

- ✓ Optimization in migration/recall management
- ✓ Migrations are managed through GPFS policies
- ✓ Recalls can be triggered by periodic scan of StoRM bring-online file list or by direct user requests
- $\checkmark$  Periodic regeneration of tape ordered file lists to include new requests in already existing lists

## **Tape drive sharing**

- ✓ Tape drives are shared among experiments
  - ✓ Each experiment can use a maximum number of drives for recall or migration
  - $\checkmark$  In case of scheduled massive recall or migration activity administrators can manually allocate more or less threads
- ✓ In several cases free drives could be used by pending recall threads

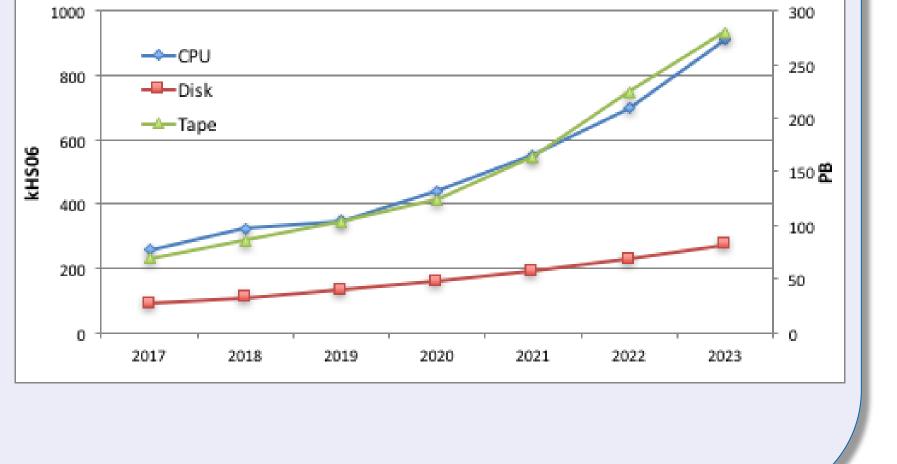
**ISP** server

HSM Exp1

HSM Exp2

HSM Exp3

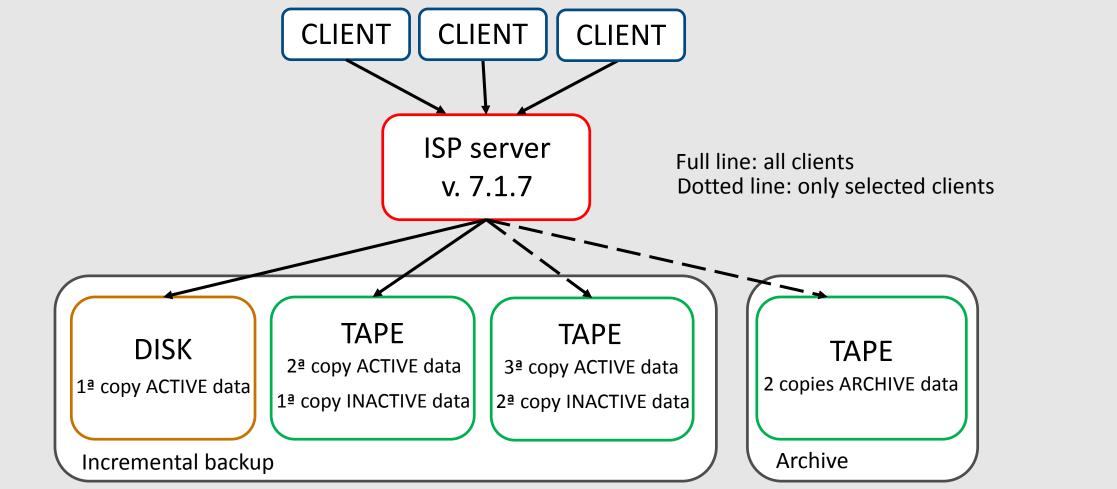
InfluxDB


Orchestrator

monitoring data workflow

orchestration workflow

- We are working on a software solution to  $\checkmark$ dynamically allocate drives to experiments ✓ InfluxDB:
  - $\checkmark$  knows free drives, number of recall and


- increasing in the next years
- ✓ 160 PB by 2021
- ✓ Planning to buy new library
- Experiments plan to use  $\checkmark$ tapes as near-line disk
  - ✓ Important increase of recall activity



- migration threads running from each HSM and number of pending recall threads
- ✓ Orchestrator:
  - $\checkmark$  performs comparison among pending threads and free drives
  - can change the number of threads on each  $\checkmark$ HSM server
  - manages the concurrent access to drives setting a dynamic priority

### **Backup and recovery service**

- Backup service to protect CNAF services data  $\checkmark$ 
  - $\checkmark$  Mail servers, web contents, documents, configurations, etc.
  - Services administered by different CNAF divisions
- $\checkmark$  Starting from experience of restore events last year
  - Substitution Service has been reconfigured to become more secure and efficient
    - Data on different media type (disk and tape)  $\checkmark$
    - $\checkmark$  Active data on disk to reduce restore time
    - ✓ Automatic e-mail to notify each CNAF division about its backup jobs status
    - ✓ Periodic restore tests



- ✓ Collector clients to limit license usage
- Exploiting of technologies already used in production for scientific data  $\checkmark$
- Documentation  $\checkmark$
- Data amount  $\checkmark$ 
  - ✓ 21 TB / 50 millions Active objects
  - ✓ 19 TB / 42 millions Inactive objects
  - ✓ 1.5 TB / 2.2 millions Archive objects
  - ✓ Used space: 21 TB (only Active) disk; 59 TB (Active, Inactive and Archive) tape

- Incremental backup  $\checkmark$ 
  - ✓ Most recent version of data (Active) saved on disk and tape
  - ✓ Old versions of modified or deleted data (Inactive) saved on tape
  - Different retentions for different data (1 month or 1 year)  $\checkmark$
  - Data are sent to server and then simultaneously to disk and tape  $\checkmark$
- ✓ Archive
  - Data that will not be changed and need to be saved on tape  $\checkmark$

A. Cavalli, D. Cesini, E. Fattibene, A. Prosperini, V. Sapunenko INFN-CNAF Bologna (Italy) enrico.fattibene@cnaf.infn.it