

CHEP 2018 - Bulgaria, 2018

Belmiro Moreira

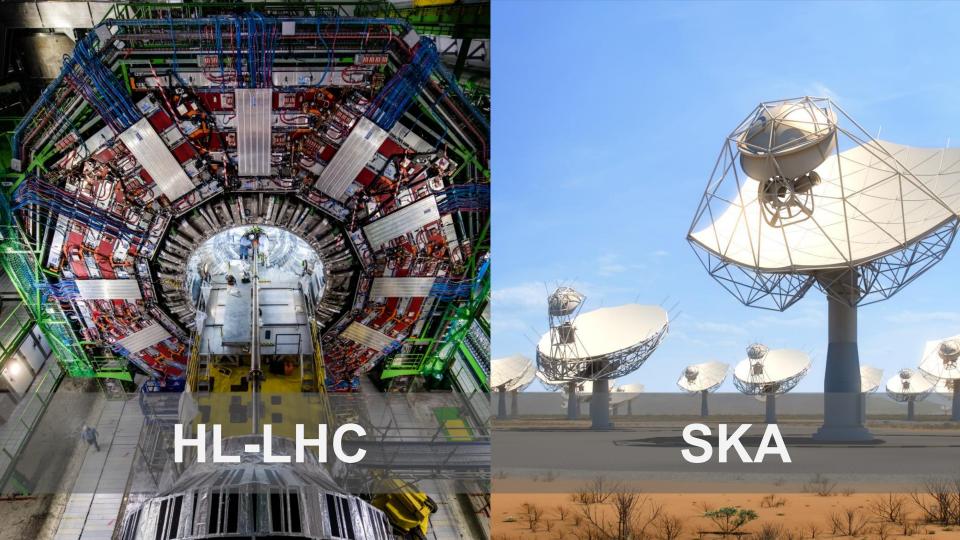
belmiro.moreira@cern.ch @belmiromoreira

Outline

- CERN Cloud Infrastructure
- Virtualization Overhead challenge
- Resource Utilization challenge
- CERN/SKA collaboration
 - How to Remove Virtualization Overhead
 - How to Increase Resource Utilization

CERN Cloud Infrastructure

- Production service since July 2013
- OpenStack based
 - Offering more than 15 OpenStack projects
 - Keystone, Nova, Neutron, Glance, Cinder, Magnum, Ironic, ...
- Running the last OpenStack release (Queens)
- 2 Data Centres (Geneva and Budapest)
 - One Region
 - 5 Availability Zones
 - Nova Cells (>70 Cells)
- More details about the OpenStack services provided by CERN Cloud
 - (Tue@11:15 T7, S3) Advanced features of the CERN OpenStack Cloud



Virtualization Overhead/Resource Utilization

- >80% of the CERN Cloud resources are dedicated for Batch processing
- CPU Performance Optimizations deployed in the CERN Cloud
 - NUMA + CPU pinning
 - 2MB Huge Pages
 - EPT (enabled)
 - o KSM (enabled)

Current Virtualization CPU Overhead: ~3%

- Virtualization Overhead depends on VM size
 - 4 VMs (8 cores each) the Virtualization overhead reduced from 7.8% to 3.3%
 - 2 VMs (16 cores each) the Virtualization overhead reduced from 16% to 4.6%
- Quotas are per Project
 - No Overcommit. Unused quota = Unused resources

How to remove the Virtualization Overhead?

- Containers provide a lightweight alternative to VMs
 - Small footprint
 - Increased performance
- OpenStack Magnum
 - Container Orchestration Engine
 - Easy to deploy Kubernetes/Swarm clusters
 - Clusters are per tenant
- Clusters usually deployed using VMs
 - Virtualization Overhead!
 - VMs are used for Security
 - Flexibility VS Performance

Containers on Baremetal

- Containers deployed directly on Baremetal
- OpenStack Ironic
 - Baremetal provisioning using OpenStack Nova APIs
- Magnum to deploy clusters directly in Baremetal
 - CERN and SKA working to add Baremetal support into Magnum
 - Several assumptions required
 - network, location, timeouts, ...
 - Ironic as provision engine
 - Kubernetes and Swarm supported

Containers on Baremetal

- Containers on Baremetal performance
 - Similar to native Baremetal
- SKA testing Containers on Baremetal in ALaSKA prototype
 - Performance and Fast context switching
- CERN evaluating how to run Batch in Containers on Baremetal
 - More RAM available for Jobs
 - More CPU time for Jobs throughput
- Containers on Baremetal can benefit other workloads
 - (Wed@12:00 T7, S5) Apache Spark usage and deployment models for scientific computing

How to improve Resource Utilization?

- Public Clouds give the illusion of infinite capacity
 - Users pay for resources that they use
- Private Clouds
 - Resource management usually is based in project quotas
 - Prevent resources being exhausted
 - Prevent "over-committing" resources/quota
 - Manage individual projects requirements
 - Reserve resources for operations with higher priority
 - Scientific Clouds
 - Projects have different funding models
 - They expect a predefined number of resources available
 - But not always these resources are used full time

Preemptible/Spot Instances

- Public Clouds
 - Based on different pricing/SLA considering resource availability
 - Reserved instances vs spot-market
- Private Clouds
 - Quotas are hard limits. Leads to a reduction in resource utilization
 - Preemptible instances
 - Projects that exhausted their quota can continue to create instances
 - Opportunistic workloads
 - Low SLA

Preemptible Instances - OpenStack Nova

- Preemptible Instances Workflow in OpenStack Nova
 - The creation of a non preemptible VM fails because there aren't available resources
 - Instances that fail with "Nova Valid Host", go to "PENDING" state instead of "ERROR"
 - The Reaper service is notified and it tries to free the requested resources
 - Rebuild the instance
 - Or change instance state to "ERROR"
- CERN and SKA are working with OpenStack Nova team to implement Preemptible Instances
- CERN is deploying a Preemptible Instances prototype
 - Expected to be ready by the end of Q3/2018

Summary

- HL-LHC and SKA will produce an unprecedented amount of data to analyse
- Small compute inefficiencies in large infrastructures translate in a huge number resources underutilized
- Flexibility vs Efficiency
- CERN and SKA working together to build a High Efficient Infrastructure
- How to Remove Virtualization Overhead?
 - Containers on Baremetal
- How to Improve Resource Utilization?
 - Preemptible Instances

belmiro.moreira@cern.ch @belmiromoreira

