Optimizing OpenStack Nova for Scientific Workloads
CHEP 2018 - Bulgaria, 2018

Belmiro Moreira
belmiro.moreira@cern.ch @belmiromoreira
Outline

● CERN Cloud Infrastructure
● Virtualization Overhead challenge
● Resource Utilization challenge
● CERN/SKA collaboration
 ○ How to Remove Virtualization Overhead
 ○ How to Increase Resource Utilization
CERN Cloud Infrastructure

- Production service since July 2013
- OpenStack based
 - Offering more than 15 OpenStack projects
 - Keystone, Nova, Neutron, Glance, Cinder, Magnum, Ironic, ...
- Running the last OpenStack release (Queens)
- 2 Data Centres (Geneva and Budapest)
 - One Region
 - 5 Availability Zones
 - Nova Cells (>70 Cells)
- More details about the OpenStack services provided by CERN Cloud
 - (Tue@11:15 - T7, S3) Advanced features of the CERN OpenStack Cloud
CERN - Cloud resources status board - 08/07/2018@13:00

<table>
<thead>
<tr>
<th>Used</th>
<th>Available</th>
<th>Used</th>
<th>Available</th>
<th>Used</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>314.5 K cores</td>
<td>317.4 K cores</td>
<td>866.2 TiB RAM</td>
<td>928.7 TiB RAM</td>
<td>10.3 PiB disk</td>
<td>15.3 PiB disk</td>
</tr>
</tbody>
</table>

Openstack services stats

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Users</td>
<td>Projects</td>
<td>VMs</td>
<td>Magnum clusters</td>
<td>Hypervisors</td>
<td>Images</td>
</tr>
<tr>
<td>3356</td>
<td>4351</td>
<td>39090</td>
<td>292</td>
<td>9117</td>
<td>3040</td>
</tr>
<tr>
<td>Volumes</td>
<td>Volume size</td>
<td>Fileshares</td>
<td>Fileshares size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5844</td>
<td>1.81 PiB</td>
<td>126</td>
<td>210 TiB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resource overview by time

- **VMs created/deleted**
- **VM changes**
- **Total VMs**
- **Average VM boot time**

Note:
- p50 without DNS Avg: 44 s
- p99 without DNS Avg: 2.5 min
- p50 with DNS Avg: 8.4 min
- p99 with DNS Avg: 9.9 min
Virtualization Overhead/Resource Utilization

- >80% of the CERN Cloud resources are dedicated for Batch processing
- CPU Performance Optimizations deployed in the CERN Cloud
 - NUMA + CPU pinning
 - 2MB Huge Pages
 - EPT (enabled)
 - KSM (enabled)

Current Virtualization CPU Overhead: ~3%

- Virtualization Overhead depends on VM size
 - 4 VMs (8 cores each) the Virtualization overhead reduced from 7.8% to 3.3%
 - 2 VMs (16 cores each) the Virtualization overhead reduced from 16% to 4.6%

- Quotas are per Project
 - No Overcommit. Unused quota = Unused resources
How to remove the Virtualization Overhead?

● Containers provide a lightweight alternative to VMs
 ○ Small footprint
 ○ Increased performance

● OpenStack Magnum
 ○ Container Orchestration Engine
 ○ Easy to deploy Kubernetes/Swarm clusters
 ○ Clusters are per tenant

● Clusters usually deployed using VMs
 ○ Virtualization Overhead!
 ○ VMs are used for Security
 ○ Flexibility VS Performance
Containers on Baremetal

- Containers deployed directly on Baremetal
- OpenStack Ironic
 - Baremetal provisioning using OpenStack Nova APIs
- Magnum to deploy clusters directly in Baremetal
 - CERN and SKA working to add Baremetal support into Magnum
 - Several assumptions required
 - network, location, timeouts, ...
 - Ironic as provision engine
 - Kubernetes and Swarm supported
Containers on Baremetal

- Containers on Baremetal performance
 - Similar to native Baremetal
- SKA testing Containers on Baremetal in ALaSKA prototype
 - Performance and Fast context switching
- CERN evaluating how to run Batch in Containers on Baremetal
 - More RAM available for Jobs
 - More CPU time for Jobs throughput
- Containers on Baremetal can benefit other workloads
 - (Wed@12:00 - T7, S5) Apache Spark usage and deployment models for scientific computing
How to improve Resource Utilization?

- Public Clouds give the illusion of infinite capacity
 - Users pay for resources that they use

- Private Clouds
 - Resource management usually is based on project quotas
 - Prevent resources from being exhausted
 - Prevent "over-committing" resources/quotas
 - Manage individual projects' requirements
 - Reserve resources for operations with higher priority
 - Scientific Clouds
 - Projects have different funding models
 - They expect a predefined number of resources available
 - But not always are these resources used full time
Preemptible/Spot Instances

● Public Clouds
 ○ Based on different pricing/SLA considering resource availability
 ○ Reserved instances vs spot-market

● Private Clouds
 ○ Quotas are hard limits. Leads to a reduction in resource utilization
 ○ Preemptible instances
 ■ Projects that exhausted their quota can continue to create instances
 ● Opportunistic workloads
 ● Low SLA
Preemptible Instances - OpenStack Nova

● Preemptible Instances Workflow in OpenStack Nova
 ○ The creation of a non preemptible VM fails because there aren’t available resources
 ○ Instances that fail with “Nova Valid Host”, go to “PENDING” state instead of “ERROR”
 ○ The Reaper service is notified and it tries to free the requested resources
 ■ Rebuild the instance
 ■ Or change instance state to “ERROR”

● CERN and SKA are working with OpenStack Nova team to implement Preemptible Instances

● CERN is deploying a Preemptible Instances prototype
 ○ Expected to be ready by the end of Q3/2018
Summary

- HL-LHC and SKA will produce an unprecedented amount of data to analyse
- Small compute inefficiencies in large infrastructures translate in a huge number resources underutilized
- Flexibility vs Efficiency
- CERN and SKA working together to build a High Efficient Infrastructure
- How to Remove Virtualization Overhead?
 - Containers on Baremetal
- How to Improve Resource Utilization?
 - Preemptible Instances