Grid services in a box

Container management in ALICE

Maxim Storetvedt
msto@hvl.no
July 12, 2018
Using containers for site-services at ALICE

- This talk will focus on the initial experiences with managing containers for VOBOX use
 - Multiple deployed within ALICE as a pilot project
- Also planned for worker nodes
 - For more on this topic, see the talk by Miguel Martinez Pedreira on JAliEn
Containers can provide several benefits over using virtual machines (VMs) for VOBOXes:
- Less overhead
- Less use of storage
- One-click deployment

Container setup for VOBOXes is very different from VMs – especially for production purposes.

The next slides are dedicated to examining:
- Configuration
- Downtime prevention
- Performance
Selected VOBOX Container platform

- **Docker** used within ALICE for site-service containers
- Other container platforms available
 - **Singularity** quickly gaining ground within HPC
- Site-services, like VOBOXes, need a full networking stack
 - Not currently available in Singularity
 - Available in platforms like Docker and Rkt
ALICE VOBOX image configuration

- We need automatic startup of VOBOX services at container launch
- Dockerfiles
 - Scripts composed of various commands to perform on a base image
- An image must be rebuilt to reflect changes in a Dockerfile
 - Since this is a pilot project, changes are frequent → frequent downtime
- Solved by pointing to a script within the container – e.g. /etc/init.sh
ALICE VOBOX Network Configuration

- **MACVLAN – A reverse VLAN**
 - A VLAN maps an OS side of a networking interface to multiple virtual networks on its network side
 - A MACVLAN maps a network side of an interface to multiple virtual interfaces, each with their own MAC address
 - Traffic sent from the virtual interfaces is sent directly to the underlying network, and identified by the assigned MAC address.

- **VOBOX containers networked using MACVLAN**
 - Allows containers to appear as normal machines on the network

MACVLAN architecture

- **Host**
 - Container 1
 - eth0: 192.168.0.3
 - 00:10:9A:B0:A1
 - Container 2
 - eth0: 192.168.0.4
 - 00:10:9B:11:23:4D

- **MACVLAN**
 - eth0: 192.168.0.2
 - 00:10:9A:3D:D7:1A

- **Physical network**
 - Gateway: 192.168.0.1

CHEP 2018 | Grid services in a box | Maxim Storetvedt
ALICE VOBOX host configuration

- VOBOXes need many files open simultaneously
 - Will quickly reach default system limit for maximum open files when more than two VOBOX containers run on a single host
 - Causes services to freeze or terminate
 - System limit must be increased to avoid these issues
- Autofs disabled on all hosts
 - Otherwise known to cause problems for CVMFS in containers
ALICE VOBOX host configuration (2)

- Host connectivity
 - The host and its containers can not reach/ping each other
 - Specific to how MACVLAN works
 - Separate Docker bridge created to obtain this connectivity

- Kernel access privileges
 - Containers have limited access privileges by default
 - Several tools and services may fail to launch
 - Most networking tools are affected
 - Full privileges granted for VOBOXes
 - Limited risk for this purpose, as VOBOXes are handled by sysadmins
Preventing containerised VOBOX downtime

- The ALICE containerised VOBOXes use the Live Restore feature
 - Allows containers to run without the Docker service
 - Useful for system updates → avoid downtime
 - Containers must still reconnect with Docker sometime
 - Will otherwise eventually fail due to log-buffer overflow
- Container management tools can handle automatic restarts for terminated containers
 - Swarm is bundled with Docker, but dying (gradually replaced by Kubernetes)
 - Not used for VOBOXes (not efficient for few containers)
Performance

- Performance monitored over longer periods
 - Tested with both the AUFS and Overlay2 storage drivers
 - Performance and system load shown to be similar to VMs
 - Faster VOBOX restart after updates/failures compared to VMs
 - Less overhead
 - Smaller storage footprint
Performance (2)

Left: Container running production jobs compared to a VM
Right: Container load compared with the same VM, for the same interval

The container can run more jobs, with less load, compared the VM
Performance – flattened images

- Performance decreases when the number of storage layers increases
 - Common for copy-on-write filesystems
 - All changes to a container are stored on a separate storage layer
 - New layer added for each commit
 - Flattened images used during testing
 - All additional layers merged into one
Conclusion

• ALICE is ready for moving site-services to containers
 • Well tested in production
 • Stability
 • Positive results in terms of load/performance

• More VOBOX containers to be deployed

• Also relevant for worker nodes – see the talk by Miguel Martinez Pedreira on JAliEn.
Thank you

Questions or comments?
E-mail: msto@hvl.no