

Grid services in a box

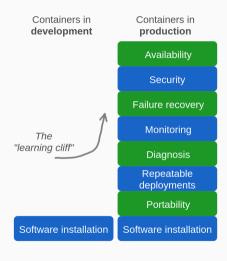
Container management in ALICE

Maxim Storetvedt

msto@hvl.no

July 12, 2018

Using containers for site-services at ALICE

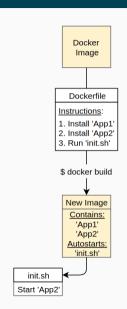

- This talk will focus on the initial experiences with managing containers for VOBOX use
 - Multiple deployed within ALICE as a pilot project
- Also planned for worker nodes
 - For more on this topic, see the <u>talk</u> by Miguel Martinez Pedreira on JAliEn

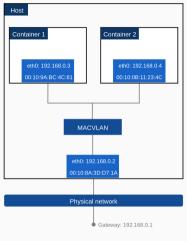
Production plot from MonALISA, Sep. 2017

Using containers for site-services at ALICE (2)

- Containers can provide several benefits over using virtual machines (VMs) for VOBOXes
 - Less overhead
 - Less use of storage
 - One-click deployment
- Container setup for VOBOXes is very different from VMs – especially for production purposes
- The next slides are dedicated to examining
 - Configuration
 - Downtime prevention
 - Performance

Selected VOBOX Container platform


- **Docker** used within ALICE for site-service containers
- Other container platforms available
 - Singularity quickly gaining ground within HPC
- Site-services, like VOBOXes, need a full networking stack
 - Not currently available in Singularity
 - Available in platforms like Docker and Rkt


ALICE VOBOX image configuration

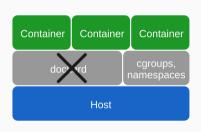
- We need automatic startup of VOBOX services at container launch
- Dockerfiles
 - Scripts composed of various commands to perform on a base image
- An image must be rebuilt to reflect changes in a Dockerfile
 - \bullet Since this is a pilot project, changes are frequent \rightarrow frequent downtime
- Solved by pointing to a script within the container e.g. /etc/init.sh

ALICE VOBOX Network Configuration

- MACVLAN A reverse VLAN
 - A VLAN maps an OS side of a networking interface to multiple virtual networks on its network side
 - A MACVLAN maps a network side of an interface to multiple virtual interfaces, each with their own MAC address
 - Traffic sent from the virtual interfaces is sent directly to the underlying network, and identified by the assigned MAC address.
- VOBOX containers networked using MACVLAN
 - Allows containers to appear as normal machines on the network

MACVLAN architecture

ALICE VOBOX host configuration


- VOBOXes need many files open simultaneously
 - Will quickly reach default system limit for maximum open files when more than two VOBOX containers run on a single host
 - Causes services to freeze or terminate
 - System limit must be increased to avoid these issues
- Autofs disabled on all hosts
 - Otherwise known to cause problems for CVMFS in containers

ALICE VOBOX host configuration (2)

- Host connectivity
 - The host and its containers can not reach/ping each other
 - Specific to how MACVLAN works
 - Separate Docker bridge created to obtain this connectivity
- Kernel access privileges
 - Containers have limited access privileges by default
 - Several tools and services may fail to launch
 - Most networking tools are affected
 - Full privileges granted for VOBOXes
 - Limited risk for this purpose, as VOBOXes are handled by sysadmins

Preventing containerised VOBOX downtime

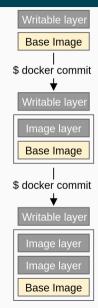
- The ALICE containerised VOBOXes use the Live Restore feature
 - Allows containers to run without the Docker service
 - ullet Useful for system updates o avoid downtime
 - Containers must still reconnect with Docker sometime
 - Will otherwise eventually fail due to log-buffer overflow
- Container management tools can handle automatic restarts for terminated containers
 - Swarm is bundled with Docker, but dying (gradually replaced by Kubernetes)
 - Not used for VOBOXes (not efficient for few containers)

By default, terminating dockerd kills all containers

Performance

- Performance monitored over longer periods
 - Tested with both the AUFS and Overlay2 storage drivers
 - Performance and system load shown to be similar to VMs
 - Faster VOBOX restart after updates/failures compared to VMs
 - Less overhead
 - Smaller storage footprint

Performance (2)



Left: Container running production jobs compared to a VM Right: Container load compared with the same VM, for the same interval

The container can run more jobs, with less load, compared the $\ensuremath{\text{VM}}$

Performance – flattened images

- Performance decreases when the number of storage layers increases
 - Common for copy-on-write filesystems
 - All changes to a container are stored on a separate storage layer
 - New layer added for each commit
 - Flattened images used during testing
 - All additional layers merged into one

Conclusion

- ALICE is ready for moving site-services to containers
 - Well tested in production
 - Stability
 - Positive results in terms of load/performance
- More VOBOX containers to be deployed
- Also relevant for worker nodes see the talk by Miguel Martinez Pedreira on JAliEn.

End

Thank you

Questions or comments?

 $E\text{-mail: } \underline{msto@hvl.no}$